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Abstract

Aims Understanding how tree species regulate multiple types of secondary chemicals along elevational gradients is critical for elucidating the physiological 
and ecological strategies of plants in response to varying biotic and/or abiotic environments. This study aims to examine how Chinese tallow tree (Triadica 
sebifera) allocates resources to the production of different secondary chemicals in response to varying environments across elevational gradients.

Methods We conducted field surveys of different herbivore feeding guilds and their damage rates on Chinese tallow trees along an 
elevational gradient in China and measured secondary chemicals (tannins and flavonoids) in damaged and undamaged leaves.

Important Findings The odds of a leaf being damaged (chewing or scarring) decreased with elevation. Flavonoid concentrations increased 
with elevation in undamaged leaves but decreased with elevation in damaged leaves, with quercitrin contributing most strongly to this 
pattern, likely as results of plant responding to changing biotic or abiotic stresses along elevational gradients. Tannin concentrations did 
not vary with elevation, so undamaged leaves had relatively lower tannin to flavonoid ratios at high elevation than at low elevation. Our 
study reveals variation in herbivory and contrasting trends in plant secondary metabolism along an elevation gradient and highlights the 
importance of simultaneously considering multiple types of secondary chemicals in plant physiological and ecological strategies.

Keywords:  herbivory, climate, elevation, defence strategies, secondary metabolites, Chinese tallow tree

摘要：了解树木如何沿海拔梯度调节多种类型的次生代谢产物对于阐明植物如何采用生理和生态策略来应对各种生物及非生物环境变化至

关重要。本研究旨在探索乌桕如何分配不同的次生代谢产物来响应海拔梯度上的环境变化。我们在中国沿海拔梯度对乌桕不同取食类型的

植食性昆虫及其对乌桕叶片的危害率进行了野外实地调查，并对健康叶片和虫害叶片中的次生代谢产物(单宁和黄酮类)进行了测定分析。

研究结果表明，乌桕叶片被危害(咀嚼或潜叶式危害)的可能性随海拔的升高而减小。遭受虫害叶片和未遭受虫害的健康叶片中黄酮类化合

物的浓度随海拔梯度变化呈现相反的趋势，即随着海拔的升高，健康叶片和遭受虫害叶片受不同的生物和非生物因素驱动，健康叶片中黄

酮类化合物浓度增加，而遭受虫害叶片中黄酮类化合物浓度下降，其中槲皮苷对黄酮类化合物随海拔梯度变化的贡献最大。单宁浓度随海

拔梯度的变化未发生显著变化，高海拔地区乌桕健康叶片中单宁与黄酮类化合物的比例与低海拔相比相对较低。我们的研究揭示了沿海拔

梯度昆虫植食性以及不同植物次生代谢产物的变化趋势，并强调了在理解植物的生理和生态策略中同时考虑多种次生代谢物质的重要性。

关键词：植食性，气候，海拔，防御策略、次生代谢产物，乌桕
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INTRODUCTION

Environmental variations along elevational gradients have increasingly 

been used to assess the impacts of diverse biotic and abiotic factors 

on plant physiological and ecological strategies (Defossez et al. 2018; 

Körner 2007; Wang et al. 2018). For example, rates of herbivory can 

be higher at lower elevation compared with higher elevation (Rokaya 

et al. 2016), where abiotic stress is typically higher (Diffey and Larkö 

1984; Green and Harding 1980). Recently, it has been proposed that 

specific plant syndromes occur across elevational zones, representing 

tradeoffs among tolerance to abiotic stress, plant growth, and plant 

defence against herbivores (Defossez et  al. 2018). In response to 

environmental stresses, plants produce secondary metabolites to 

adapt to these environments (Hartmann 1996; Karppinen et al. 2016). 

Because biotic and abiotic factors may interact to shape defence 

production in plants, plant chemical responses to elevational gradients 

are complex (Pellissier et al. 2014). Therefore, although studies have 

recently examined plant responses to elevational gradient (Defossez 

et  al. 2018; Galman et  al. 2018; Pellissier et  al. 2016), we have no 

general conceptual framework for how plants allocate resources to 

the production of different secondary chemicals across elevational 

gradients.

One of the most notable biotic factors that shapes plant secondary 

chemicals is herbivory (Coley and Barone 1996; Züst et  al. 2012). The 

abundance and diversity of herbivores are generally thought to be greater 

at lower elevation than at higher elevation (Hodkinson 2005; Lara et al. 

2002; Lawton et  al. 1987); thus, plants at lower elevation may exhibit 

higher investment in defences against herbivores due to higher herbivory 

pressure (Coley and Barone 1996; Pellissier et al. 2012, 2014). However, 

previous reports on the effects of herbivory on plant secondary chemicals 

along elevational gradients have found inconsistent patterns (reviewed by 

Rasmann et al. 2014). For example, with leaf herbivory decreasing with 

increasing elevation, the level of iridoid glycosides in Plantago lanceolata 

declined with increasing elevation (Pellissier et al. 2014). However, when 

leaf herbivory increased towards higher elevations, total sesquiterpenes 

in Pinus yunnanensis needles decreased (Hengxiao et al. 1999), whereas 

phenolics in Quercus robur leaves increased (Abdala-Roberts et al. 2016b). 

Interactions between herbivory pressure and other factors may contribute 

to these contrasting patterns.

Changes in abiotic factors along elevational gradients, including 

climate and UV radiation, can drastically affect plant secondary 

metabolism (Karppinen et al. 2016; Ramakrishna and Ravishankar 2011; 

Tegelberg et al. 2001). Plants at higher elevations are typically exposed 

to more severe environmental stresses, such as lower temperatures and 

enhanced UV-B radiation (Körner 1999). Accordingly, various classes of 

plant secondary chemicals, which respond to those abiotic factors along 

elevational gradients, are expected to show elevational trends (Albert 

et al. 2009; Alonso-Amelot et al. 2007, 2004). For example, variations in 

total phenolics and flavonoids may indicate plant response to changes in 

temperature and UV-B radiation (Cotrozzi et al. 2018; Hectors et al. 2014; 

Mikulic-Petkovsek et al. 2015; Schreiner et al. 2014).

Plant secondary chemicals differ in their responses to multiple biotic 

and abiotic stresses (Bartwal et al. 2013; Maag et al. 2015; Nakabayashi 

and Saito 2015). Some secondary chemicals, such as tannins, can be 

feeding deterrents and/or toxic, negatively affecting the development 

and reproduction of herbivores (Barbehenn and Peter Constabel 2011; 

Cooper and Owen-Smith 1985; Forkner et al. 2004; Hughes 1990; van 

Hoven 1984). For example, Feeny (1968) found tannin content in oak 

leaves influenced the larval growth of the winter moth Operophtera 

brumata. van Hoven (1984) reported that tannin levels in African acacias 

leaves increased after being damaged by Kudu. Other chemicals, such 

as flavonoids, can not only protect plants from herbivores and microbial 

pathogens but also help plants tolerate many abiotic factors, such as 

UV, low temperature, and drought (Brunetti et al. 2018; Harborne and 

Williams 2000; Jiang et al. 2016; Ma et al. 2017; Mathesius 2018; Schulz 

et  al. 2015; Treutter 2005). If secondary metabolites with different 

functions are derived from the same biosynthetic pathway (Patra et al. 

2013; Yonemori et al. 2010; Yoshida et al. 2015), changes in one class of 

chemicals that are associated with response to one kind of stress may 

affect another class of chemicals that are associated with other stresses. 

For example, previous studies showed that tannins share a biochemical 

synthesis pathway with flavonoids (Chen et al. 2009; Hichri et al. 2011; 

Vogt 2010). Thus, herbivore- or abiotic environment-induced changes 

of tannins may be associated with changes in flavonoids (Huang et al. 

2013; Wam et al. 2017).

Because plants often simultaneously respond to biotic and abiotic 

stresses that vary along elevational gradients (Abdala-Roberts et  al. 

2016b; Rasmann et  al. 2014), we predict that production of secondary 

chemicals will depend on the major stresses and variation of these stresses 

along elevation. Most previous studies, however, have focussed only on 

how a single class of herbivore-resistant chemicals or anti-abiotic stress 

chemicals change with elevational gradients (Albert et al. 2009; Carbonell-

Bejerano et al. 2014, Pellissier et al. 2016; Sandeep et al. 2015; Shukla et al. 

2016), neglecting that the effects of biotic and abiotic factors on various 

secondary chemicals may not be independent especially when two classes 

of chemicals are in the same biosynthetic pathway. Simultaneously 

considering how plants regulate multiple types of secondary chemicals 

that are closely related in function and category to respond to biotic 

and abiotic stresses may facilitate the explicit understanding of plant 

physiological and ecological changes along elevational gradients. To date, 

however, such studies are rare (but see Rasmann et al. 2014).

Here, we examine elevational patterns of secondary chemicals 

in Chinese tallow tree (Triadica sebifera (L.) Small = Sapium sebiferum 

(L.) Roxb., hereafter referred to as ‘Triadica’) as responses to changes 

in herbivory and abiotic environments. Triadica sebifera is a perennial 

deciduous tree with a variety of medicinal, industrial and horticultural 

values (Rao et al. 2015; Wang et al. 2013). Previously, we have shown 

that various secondary chemicals in tallow tree can be induced by 

multiple feeding types of herbivores, with leaf-chewing and leaf-

rolling herbivores increasing leaf phenolics and tannins and leaf-

rolling weevils decreasing individual root flavonoids (Xiao et al. 2019). 

However, there is little known about how secondary chemical changes 

in tallow tree respond to abiotic stresses or combined biotic and abiotic 

conditions. Because tannins and flavonoids vary in their functional 

responses to herbivory and abiotic stresses (Barbehenn and Peter 

Constabel 2011; Bashandy et al. 2009; Forkner et al. 2004; Jaakola and 

Hohtola 2010), we predict that along elevational gradients, tannins 

will be more closely associated with herbivory, while flavonoids will be 

more affected by varying abiotic environments.

In this study, we conducted field surveys of herbivores and their 

damages on tallow trees and performed chemical (tannins and 

flavonoids) analysis of both damaged and undamaged leaves sampled 

from trees growing on a mountain from 100 to 1000 m above sea 

level. Specifically, we asked the following questions: (i) Do the 

abundance and diversity of herbivores and herbivory on tallow trees 

decrease with increasing elevation? (ii) Do tannins and flavonoids 

vary along elevational gradients, and do they show similar patterns? 

(iii) Do secondary chemicals (tannins and flavonoids) in damaged and 

undamaged leaves show different patterns in response to biotic and 

abiotic environmental changes along elevational gradients?

MATERIALS AND METHODS

Study system and site

Triadica sebifera is widely distributed in southern China (Zhang et  al. 

1994) and mostly grows below 1000 m above sea level (Jin and Huang 
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1984). Triadica plants are usually attacked by a diverse array of specialist 

and generalist insect herbivores (Huang et al. 2014; Wang et al. 2009, 

2012b; Zhang et  al. 2015), including leaf chewers, leaf miners, leaf 

gall formers, leaf rollers and phloem suckers, which contribute to the 

variations in defence induction in Triadica plants (Huang et al. 2014).

We conducted an elevational survey sample collection on Tianzhu 

Mountain, which is located in Yichang City, Hubei Province. The highest 

peak of Tianzhu Mountain has a height of 1445 m above sea level and 

Triadica plants are commonly found around the mountain area.

Herbivores and damage

In July of 2015, we investigated herbivore abundance and diversity on 

individual Triadica plants growing from 128 to 910 m above sea level. 

We originally planned to sample at least three trees every 50 m along 

the elevation. However, some sampling sites had fewer than three 

trees. In total, we selected 22 Triadica plants that grew below 500 m 

above sea level for herbivory survey and leaf sample collection, spaced 

at least 10 m apart. As we found only a very small number of Triadica 

plants at an elevation of above 500 m, we investigated herbivory and 

collected samples for all Triadica plants that can be investigated and 

sampled at these higher elevations (N = 3). All the sampled trees were 

in similar size with the average height of 2 m (1.5–2.5 m).

To assess the abundance and diversity of herbivorous insects on 

Triadica plants along elevational gradients, we carefully visually 

inspected and examined the identities and quantities of all insect 

herbivores on each tree. For the unknown insects on each plant, 

we recorded the number of each species and then stored samples in 

70% alcohol and sent them to taxonomists at the Institute of Zoology, 

Chinese Academy of Sciences for subsequent species identification. 

We calculated herbivore species number on each tree as the species 

richness of herbivores. We calculated the abundance of herbivorous 

insects of each tree as follows: 
∑

Niwhere, N
i
 = the individual number 

of the ith herbivore insect.

To evaluate insect herbivory and plant defence, we collected leaves 

from six randomly selected branches per plant and recorded the 

number of damaged leaves and undamaged leaves, thus calculating 

the total leaf numbers of each branch. Then, we collected all damaged 

leaves from each plant and took digital images to measure herbivory. 

We put all the undamaged leaves and damaged leaves of each plant 

into a zipper storage bag filled with silica gel. We dried the samples at 

room temperature for 7 days, ground them to powder and then stored 

them in sealed tubes at −20°C until chemical analysis.

To quantify the level of herbivory, we measured leaf damaged area 

and leaf damage frequency. For leaf damaged area, ImageJ software 

(National Institutes of Health, Bethesda, MD) was used to calculate the 

area removed by herbivores and the total area of each photographed 

leaf. When the leaf edge was affected by insect damage, a line was 

drawn representing the leaf perimeter to obtain an approximate value 

for total leaf area (Lobregat et al. 2018). The leaf damaged area (%) of 

each plant was calculated as follows: removed leaf area/total leaf area 

of damaged leaves × 100 × number of damaged leaves/total number 

of leaves. For leaf damage frequency, we first divided leaf damage into 

three different types (i) leaf-chewing damage (caused by leaf chewers), 

(ii) leaf-rolling damage (caused by leaf rollers such as weevils) and (iii) 

leaf feeding scars (caused by leaf miners and suckers, with symptoms 

including the removal of green leaf tissue, leaving a clear membrane, 

or with ‘shot holes’ in the leaf). We counted the number of leaves on 

each tree with and without each of these types of damage.

Chemical analyses

We analysed total tannins and the levels of five individual flavonoids 

(quercetin, isoquercetin, quercitrin, kaempferitrin and kaempferol) 

in all leaf samples. We extracted each 100-mg sample with 5  ml of 

methanol–0.4% phosphoric acid in aqueous solution (48:52, v:v) at 

4°C for 24 h and removed insoluble material by filtering the solutions 

through a 0.22-µm membrane. We estimated total tannin content using 

a modified radial diffusion assay (Hagerman 1987) using tannic acid as 

the standard., High-performance liquid chromatography (HPLC) was 

used to determine the level of each of the five flavonoids according to 

the methods in Wang et al. (2012a). The total flavonoid content of each 

plant was calculated as the sum of the five individual flavonoid contents.

Data analyses

A set of regressions (that varied in the model types depending on the 

response variable—detailed below) were used to examine how the 

abundance and species richness of herbivores and leaf area damaged 

depended on elevation. Logistic regression was used to examine the 

odds of a leaf being damaged (probability of being damaged/probability 

of not being damaged) on elevation (overall, and by each type of 

herbivory damage) (using proc glimmix, logit link, binary variable). 

Because tannin and flavonoid concentrations appeared to have non-

linear relationships with elevation, we fit linear regressions (separate 

intercept and slopes, plant as a random factor to control for non-

independence in the data) and power functions (separate constant and 

exponents, plant as a random factor). In every case, power function 

had lower Akaike’s information criterion scores (and so we used those). 

Another mixed model regression was used to examine whether the 

ratio of tannins to flavonoids (relative change in tannins and flavonoid) 

varied with elevation, damage or their interaction in a model that 

included plant as a random factor to control for non-independence in 

the data (proc mixed). For variables with relationships with altitude 

that differed in sign (i.e. one is positive and so significantly >0 and the 

other is negative and so significantly <0) for damaged vs. undamaged 

leaves, we inferred the relationships were different by transitive 

reasoning (i.e. whenever x > z and y < z, then also x > y). All analyses 

were conducted using SAS version 9.4.

RESULTS

Herbivores and herbivory along the elevational gradient

In total, we found 16 herbivore species on Triadica across the 

elevational gradient, including 4 specialist herbivores and 12 generalist 

herbivores (Table  1). Visual inspection appeared to show that the 

abundance and diversity of herbivores and the percentage of leaf area 

damaged decreased with elevation (Supplementary Fig. S1). However, 

the abundance (F
1,23

  =  0.12, P  =  0.727) and diversity (F
1,23

  =  3.03, 

P = 0.095) of herbivores and leaf area damaged (F
1,23

 = 2.55, P = 0.124) 

did not depend significantly on elevation. The odds of a leaf being 

damaged (overall Fig.  1a, chewing Fig.  1b, scarring Fig.  1c, but not 

rolling Fig. 1d) decreased with elevation.

Plant secondary chemicals along elevations

Tannin concentrations appeared to decrease with elevation, especially 

for damaged leaves, but these patterns were not significant (Fig. 2a). 

Flavonoid concentrations in damaged and undamaged leaves showed 

opposite trends: with increasing elevation, flavonoid concentration 

increased in undamaged leaves but decreased in damaged leaves 

(Fig.  2b). The main component of flavonoids, quercitrin (46.67%), 

showed the same elevational pattern as total leaf flavonoids in both 

damaged and undamaged leaves (Fig.  3a), but the other individual 

flavonoids did not show similar elevational patterns (Fig. 3b–e).

The ratio of tannins to flavonoids (relative change in tannins 

and flavonoid) showed a pattern opposite to that of flavonoids with 

elevation causing a relative decrease in undamaged leaves and a 

relative increase in damaged leaves (Fig. 4).
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Figure 1: Relationship between elevation and (a) the odds of a leaf being damaged by any type of herbivore feeding (probability of being damaged/
probability of not being damaged), (b) the odds of a leaf being damaged by a chewing herbivore, (c) the odds of a leaf being damaged by scarring herbivore 
damage and (d) the odds of a leaf being damaged by a leaf-rolling herbivore. McFadden’s pseudo-R2 values [1 − ln (likelihood of full model)/ln (likelihood of 
model with only intercept)] were 0.16, 0.18, 0.14 and 0.01, respectively.

Table 1: Herbivores found on Triadica sebifera plants classified by host specificity, damage type and distribution along elevations

Herbivore Family Host specificitya Damage type Distribution along elevations (m)

Lasioptera sp. Cecidomyiidae Specialist Leaf scarring 100–400

Heterapoderopsis bicallosicollis Attelabidae Specialist Leaf rolling 100–600

Bikasha collaris (Walker) Chrysomelidae Specialist Leaf chewing 100–400

Gadirtha inexacta (Walker) Noctuidae Specialist Leaf chewing 100–150

Clania variegata Snellen  Psychidae Generalist Leaf chewing 100–350

Gryllotalpa africana Palisot et Beauvois  Grylloidea Generalist Leaf chewing 100–150

Cnidocampa flavescens (Walker) Eucleidae Generalist Leaf chewing 100–350

Gatesclarkeana idia Diakonoff Olethreutidae Generalist Leaf chewing 100–500

Biston marginata Shiraki Geometridae Generalist Leaf chewing 100–150

Mimastra cyanura Hope Chrysomelidae Generalist Leaf chewing 300–350

Atractomorpha sinensis Bolvar Locustoidea Generalist Leaf chewing 300–350

Unknown Geometridae Generalist Leaf chewing 300–350

Geisha distinctissima (Walker) Flatidae Generalist Leaf sucking 800–850

Ricania speculum (Walker)  Ricaniidae Generalist Leaf sucking 100–600

Tricentrus aleuritis Chou Membracidae Generalist Leaf sucking 200–450

Unknown Cicadellidae Generalist Leaf sucking 450–500

aHost specificity of the species was obtained from Wang et al. (2009); Wang et al. (2012b); Huang et al. (2014); Zhang et al. (2015).
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DISCUSSION

Shifting secondary chemical responses across elevations

The strength of plant–herbivore interactions is generally predicted 

to increase towards lower elevations (Pellissier et  al. 2012; 

Rodríguez-Castañeda et  al. 2010), while the impacts of climatic 

factors on plant traits are expected to be greater towards higher 

elevations (Abdala-Roberts et  al. 2016b). Thus, changes in biotic 

and abiotic factors along elevational gradients may lead to variation 

in multiple types of defence compounds in plants (Defossez et al. 

2018; Rasmann et  al. 2014). In our study, we found variation 

among multiple secondary chemicals in Triadica plants along an 

elevational gradient, and those responses may have been driven 

by herbivory and abiotic environment. Triadica plants allocated a 

greater amount of secondary metabolites (tannins plus flavonoids) 

to damaged leaves than undamaged leaves under the higher 

herbivory pressures at low elevations, whereas at high elevations, 

plants allocated more secondary metabolites (flavonoids) to 

undamaged leaves (Fig. 2). These results indicate that plants may 

adopt an allocation strategy that is dependent on environmental 

variation along elevational gradients.

Response of flavonoids across elevations

In addition to defending against herbivory, flavonoids have also been 

reported to play a major role in helping plants to tolerate many abiotic 

stresses, especially UV-B and low-temperature stress (Bashandy et al. 

2009; Jaakola and Hohtola 2010; Righini et al. 2019; Schulz et al. 2015; 

Treutter 2005). The stronger UV-B or colder temperatures at high 

elevations could induce more flavonoids in plants (Majuakim et  al. 

2014; Popović et al. 2018). It is important to note that we did not directly 

measure abiotic stress in this study. However, previous literatures have 

reported that as elevation increases, temperature decreases (Green and 

Harding 1980), while UV radiation intensity increases (Diffey and Larkö 

1984); thus, change in abiotic conditions along elevational gradients is 

expected (Bilger et al. 2007; Körner 2007). The increase in flavonoids 

in undamaged leaves at high elevations could suggest that Triadica are 

responding to more intense abiotic stresses by producing protective 

flavonoids, however, flavonoids in damaged leaves decreased (Fig. 2b), 

which could be explained by the decreasing herbivore damage level 

and corresponding reduction of herbivore-induced defences as 

elevation increased. The contrasting trend in flavonoids in damaged 

and undamaged leaves at high elevations vs. low elevations probably 

reflects the variable roles of flavonoids in response to different 

environmental stresses along elevational gradients, i.e., plants may 

produce more flavonoids in response to stronger UV-B and harsher 

climates at high elevation, where there are also fewer herbivores. We 

note that, of the five component flavonoids, the major one, quercitrin 

showed the same pattern with total flavonoids (Figs 2 and 3). Likely 

playing a key role in responding to the abiotic stress along elevation. 

As reported by previous studies, quercitrin could exhibit high UV-B 

protective properties (dos Santos Nascimento et al. 2015; Nenadis et al. 

2015).

Response of tannins across elevations

Plant–herbivore interactions should be stronger under warmer and 

more stable climatic conditions; thus, plants are expected to invest 

more resources in defence against herbivory under such conditions 

(Benevenuto et  al. 2020; Schemske et  al. 2009). In general, plants 

growing at lower elevation are exposed to greater herbivore diversity 

and abundance, which may cause higher leaf damage, thus producing 

higher levels of defensive chemicals (Callis-Duehl et al. 2017; Pellissier 

et  al. 2016). In this study, although the sampled abundance and 

diversity of herbivores on Triadica did not vary with elevation, leaf 

herbivory significantly decreased with increasing elevation (Fig.  1). 

As we sampled insect herbivores only at one time period, it may be 

that leaf herbivory is a more enduring signature of herbivory pressure 

than a single insect survey. Or, it could be that herbivores feed at 

different rates dependent on elevational variation in both abiotic 

factors (e.g. temperature) and corresponding changes to plant primary 

and secondary compounds (Rasmann et al. 2014). As a defence class, 

tannins are generally expected to be more important in defence against 

herbivores rather than abiotic stress (but see Gourlay and Constabel 

2019); however, we did not detect significant variation in tannins 

across different elevations. This suggests that either tannins were 

unresponsive to herbivory levels and differences in abiotic stress (e.g. 

UV and temperature) across elevation or that the tannins responded 

to abiotic and biotic stress and that these potentially simultaneous 

but opposite responses masked one another (Fig.  2a) (e.g. at high 

elevations, plants may produce fewer tannins due to less herbivory, 

however, the lower temperature and/or stronger UV may result in 

more tannins). Of course, demonstrating an anti-herbivore effect of 

tannins or other chemicals in this or other observational studies is not 

feasible, but we assume that chemicals that have been shown to have 

such effects in experimental studies with Triadica (Huang et al. 2014; 

Wang et al. 2012a) are likely to have similar functions in this system.

Figure 2: Effects of elevation on (a) a leaf tannin concentration in damaged 
(black squares) and undamaged (grey diamonds) leaves and (b) leaf 
flavonoid concentration in damaged (black squares) and undamaged (grey 
diamonds) leaves of Triadica plants. Solid fitted curves indicate a significant 
relationship (P  <  0.05), and the dotted curve indicates a marginally 
significant relationship (0.05 ≤ P < 0.10).
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Optimal defence resource allocation across elevations

Several classical theories seek to explain the quantitative and qualitative 

patterns of plant defence, such as the optimal defence hypothesis 

(Rhoades 1979), the resource availability hypothesis (Coley et al. 1985) 

and the environmental constraint hypothesis (Bryant et al. 1988; Tuomi 

et al. 1988). Plants growing along environmental gradients experience 

varying biotic and abiotic stresses; thus, the type and amount of plant 

defence may represent optimization given available resources (Coley 

et  al. 1985; Herms and Mattson 1992). Generally, plants at lower 

elevations are more strongly affected by biotic factors, suffering more 

herbivore damage (Coley and Barone 1996; Pellissier et al. 2012, 2014), 

while plants at higher elevations are more strongly influenced by hasher 

abiotic conditions, such as lower temperatures and stronger UV-B 

(Körner 1999). The different strengths of biotic and abiotic interactions 

thus alter plant phenotype, and the complex selective pressures 

on plants could shape the allocation of resource to abiotic and biotic 

Figure 3: Relationship between elevation and the concentration of each flavonoid: (a) a leaf quercitrin concentration in damaged (black squares) and 
undamaged (grey diamonds) leaves, (b) a leaf isoquercetin concentration in damaged (black squares) and undamaged (grey diamonds) leaves, (c) a leaf 
quercetin concentration in damaged (black squares) and undamaged (grey diamonds) leaves, (d) a leaf kaempferitrin concentration in damaged (black 
squares) and undamaged (grey diamonds) leaves and (e) a leaf kaempferol concentration in damaged (black squares) and undamaged (grey diamonds) leaves 
of Triadica plants. Fitted curves indicate a significant relationship (P < 0.05).
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stressors (Abdala-Roberts et al. 2016b; Defossez et al. 2018; Pellissier et al. 

2012; Rodríguez-Castañeda et  al. 2010). In our study, Triadica plants 

showed different allocation patterns of secondary chemicals along an 

elevational gradient, with flavonoid allocation relatively greater at high 

elevations for undamaged leaves and relatively greater at low elevations 

for damaged leaves compared to tannin allocation (Fig. 4) (mostly due to 

changes in flavonoid levels, Fig. 2). Such contrasting flavonoid allocation 

patterns may imply lower defence to abiotic stresses for damaged leaves 

but higher defence to abiotic stresses for undamaged leaves at high 

elevations. However, the main limitation of our study is that we did 

not explicitly test these mechanisms by measuring plant fitness and 

abiotic conditions across the elevational gradient. Although we expect 

that, in general, abiotic stresses increase at higher elevations, we cannot 

relate specific chemical responses to specific abiotic stressors. Moreover, 

to tease apart whether these contrasting responses of tallow trees to 

biotic and abiotic environments along elevation gradients are due to 

adaptation (i.e. evolution) or phenotypic plasticity, reciprocal transplant 

common gardens along elevation gradients should be considered in 

future work (Bakhtiari et al. 2019; Buckley et al. 2019).

Defence resource allocation between damaged and 
undamaged leaves

Secondary chemicals in plants may represent either constitutive 

defences, which are always expressed in a plant, or inducible defences, 

which are synthesized or mobilized in response to a stimulus, such 

as herbivore damage (Karban et  al. 1997, 1999; Rhoades 1979). In 

our study, the secondary metabolites in healthy leaves may generally 

represent the constitutive response of plants to environments. Notably, 

in our study, as the elevation increased, the degree of leaf damage 

decreased (Fig.  1), resulting in a weaker effect on the synthesis of 

secondary metabolites in healthy leaves. Therefore, at high elevations, 

the flavonoid content in healthy leaves can largely reflect the response 

of plants to abiotic stresses. In our study, sampling both damaged and 

undamaged leaves allowed us to tease apart constitutive and induced 

defences, facilitating an explicit understanding how plants balance 

multiple chemical responses to different environmental stresses. 

However, the content of these chemicals in healthy leaves may also 

be affected by herbivory because insect damage to plant leaves not 

only causes local defence induction in the damaged leaves but can 

also cause systemic defence induction in neighbouring leaves (Abdala-

Roberts et al. 2016a). In this regard, future manipulative experiments 

controlling herbivores along the elevation are needed to rule out the 

possibility that herbivores preferentially consumed leaves with lower 

tannin concentrations.

Because many secondary chemicals have multiple functions in 

plant response to biotic and abiotic stresses, our study indicates that the 

consideration of plant chemical response to varying environments may 

facilitate an explicit understanding of the role of secondary chemicals 

in responding to a specific type of stress. Also, the potential interactive 

effects of these chemicals including synergistic and/or antagonistic 

effects of chemicals as well as non-independence in the production or 

allocation of chemicals may need to be considered.

Supplementary Material
Supplementary material is available at Journal of Plant Ecology online.

Figure S1: Relationship between elevation and (a) leaf area damaged, 

(b) abundance of herbivores, and (c) diversity of herbivores.
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