时玉

时玉


时玉 博士,特聘教授

2008年于南阳师范学院获得工学学士学位;2011年于河南工业大学获得微生物学硕士学位;2015年于中国科学院南京土壤研究所获得环境科学博士学位;20151-20213月,在中国科学院南京土壤研究所工作;20213月,入选河南大学黄河学者特聘教授,进入生物互作与生态安全实验室工作。

E-mail: yshi@henu.edu.cn

主要研究方向

1. 农业土壤微生物时空演变及其生态功能

2. 地上昆虫-土壤微生物互作与小麦生长的耦合机制

3. 入侵植物-土壤微生物互作及其时空演变机制

4. 微生物组大数据,生物信息学

主持和参与的重要研究项目:

1. 国家自然科学基金面上项目:华北平原麦田微生物群落构建与交互作用的时空演变” 2021-202458 主持

2. 国家重点研发计划青年项目:根际合生元靶向消减土壤生物障碍机制及技术体系” 2021-2025100 骨干

3. 河南省优秀青年科学基金:小麦土壤微生物功能菌群分布与演替”2022-202425 主持

4. 国家自然科学基金青年项目:青藏高原典型高寒草甸土壤微生物对增温和降水改变的响应” 2018-202026 主持

5. 国家重点研发计划:耕地地力影响农业有害生物发生的机制与调控课题四土壤退化对农业主要有害生物发生影响机制子课题土壤退化对农业主要有害生物发生影响机制2017-202050 骨干

6. 南京土壤研究所一三五计划和领域前沿项目:我国华北平原麦田土壤放线菌空间分布” 2016-2018  22 主持

7. 自然资源部国土整治中心项目:重点区域生态系统土壤与植物测试分析研究,2019/07-2019/12 40万,主持。

8. 公安部物证鉴定中心协同创新工作项目:土壤物证中微生物群落相似性比对方法研究” 2016.12-2017.12. 10 主持

9. 科技基础性工作专项:西藏地区极端特色微生物资源及其多样性研究2015FY110100 西藏地区特色土壤微生物资源调查及多样性研究2015.5-2019.4 125 骨干

获得奖励

2022年,科睿唯安-全球高被引学者

2022年,江苏省科学技术二等奖

2022年,全国第六届大学生生命科学竞赛-优秀指导教师

2021年,第十六届中国土壤学会科学技术一等奖

发表文章 链接:https://www.researchgate.net/profile/Yu-Shi-61.

1. Tian, B, Zhu, M, Pei, Y, Ran, G, Shi, Y*., Ding, J., 2022. Climate warming alters the soil microbial association network and role of keystone taxa in determining wheat quality in the field. Agriculture, Ecosystems & Environment 326, 107817.

2. Ye M, Zhang Z, Sun M, Shi Y*. 2022. Dynamics, gene transfer and ecological function of intracellular and extracellular DNA in environmental microbiome. Imeta.

3. Shi, Y, Delgado-Baquerizo, M, Li, Y, Yang, Y, Zhu, Y-G., Peñuelas, J, and Chu, H 2020. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International, 142, 105869.

4. Shi, Y, Zhang, K, Li, Q, Liu, X, He, J.-S, Chu H*, 2020. Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland. Science of the Total Environment 714, 136794.

5. Shi, Y, Dang, K, Dong, Y, Feng, M, Wang, B, Li, J, Chu H*. 2020. Soil fungal community assembly processes under long-term fertilization. European Journal of Soil Science,71:716-726.

6. Shi, Y, Fan, K, Li, Y, Yang, T, He, J.-S, Chu H*, 2019. Archaea enhance the robustness of microbial co-occurrence networks in Tibetan Plateau soils. Soil Science Society of America Journal 83, 4, 1093-1099.

7. Shi, Y, Li Y, Xiang X, Sun R, Yang T, He D, Zhang K, Ni Y, Zhu Y, Adams JM, Chu H*. 2018. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome, 6:27.

8. Shi, Y, Li Y, Yuan M, Adams J, Pan Z, Yang Y, Chu H*, 2019. A biogeographic map of soil bacterial communities in wheats field of the North China Plain. Soil Ecology Letters 1, 9.

9. Ladau, J.#, Shi, Y#., Jing, X., He, J.-S., Chen, L., Lin, X., Fierer, N., Gilbert, J.A., Pollard, K.S., Chu, H., Mason, O., 2018. Existing Climate Change Will Lead to Pronounced Shifts in the Diversity of Soil Prokaryotes. mSystems 3.

10. Cui H#, Shi Y#, Zhou J, Chu H*, Cang L, Zhou D. 2018. Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition. Agriculture, Ecosystems and Environment, 267:165–173.

11. Tian X, Shi Y#, Geng L, Chu H, Zhang J, Song F, Duan J, Shu C. 2017. Template preparation affects 16S rRNA high-throughput sequencing analysis of phyllosphere microbial communities. Frontiers in Plant Science, 8: 1623.

12. Shi Y, Adams JM, Ni Y, Yang T, Jing X, Chen L, He J, Chu H*. 2016. The biogeography of soil archaeal communities on the eastern Tibetan Plateau. Scientific Reports, 6: 38893

13. Shi Y, Grogan P, Sun H, Xiong J, Yang Y, Zhou J, Chu H*. 2015. Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities. Soil Biology & Biochemistry, 86:126-134.

14. Chu H*, Sun H, Tripathi BM, Adams JM, Huang R, Zhang Y, Shi Y*.2016. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environmental Microbiology, 18: 1523-1533.

15. Shen C#, Shi Y#, Ni Y, Deng Y, Van Nostrand JD, He Z, Zhou J, Chu H*. 2016. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain. Frontiers in Microbiology, 7: 1184.

16. Shi Y, Xiang X, Shen C, Chu H*, Neufeld JD, Walker VK, Grogan P. 2015,  Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Applied and Environmental Microbiology, 81:492-501.

17. Zhang, L.Y., Delgado-Baquerizo, M., Shi, Y., Liu, X., Yang, Y. F., Chu, H. Y. 2021. Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems. Water Research198117139

18. Zhang, H. Q., Zhao, X.Q., Shi, Y., Liang, Y. T., Shen, R. F. 2021. Changes in soil bacterial communities with increasing distance from maize roots affected by ammonium and nitrate additions. Geoderma 398 (1):115102.

19. Zhang, K., Shi, Y., Cui, X., Yue, P., Li, K., Liu, X., Tripathi, B.M., Chu, H., Lozupone, C., 2019. Salinity Is a Key Determinant for Soil Microbial Communities in a Desert Ecosystem. mSystems 4.

20. Zhang, L.Y., Adams, J.M., Dumont, M.G., Li, Y.T., Shi, Y., He, D., He, J.S., Chu, H.Y., 2019. Distinct methanotrophic communities exist in habitats with different soil water contents. Soil Biology & Biochemistry 132, 143-152.

21. Wu, H, Adams, JM, Shi, Y, Li, Y, Song, X, Zhao, X, Chu, H*, Zhang, G.-L*, 2019. Depth-Dependent Patterns of Bacterial Communities and Assembly Processes in a Typical Red Soil Critical Zone. Geomicrobiology Journal, 1-12.

22. Yang, T., Tedersoo, L., Soltis, P.S., Soltis, D.E., Gilbert, J.A., Sun, M., Shi, Y., Wang, H., Li, Y., Zhang, J., Chen, Z., Lin, H., Zhao, Y., Fu, C., Chu, H., 2018. Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China. The ISME Journal, 13, 686-697.

23. Feng M, Adams JM, Fan K, Shi Y, Sun R, Wang D, Guo X, Chu H*. 2018. Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biology & Biochemistry, 126: 151-158.

24. Fan K, Weisenhorn P, Gilbert JA, Shi Y, Bai Y, Chu H*. 2018. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biology & Biochemistry, 121:185-192.

25. Thompson LR, et al. and The Earth Microbiome Project Consortium including Yu Shi. 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551: 457.

26. Yang T, Adams JM, Shi Y, Sun H, Cheng L, Zhang Y, Chu H*. 2017. Fungal community assemblages in a high elevation desert environment: absence of dispersal limitation and edaphic effects in surface soil. Soil Biology & Biochemistry, 115: 393-402.

27. Zhao K, Jing X, Sanders NJ, Chen L, Shi Y, Flynn DFB, Wang Y, Chu H, Liang W, He J. 2017. On the controls of abundance for soil-dwelling organisms on the Tibetan Plateau. Ecosphere, 8:1-13.

28. Zhang K, Adams JM, Shi Y, Yang T, Sun R, He D, Ni Y, Chu H*. 2017. Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environmental Microbiology, 19, 3649–3659.

29. Fan K, Cardona C, Li Y, Shi Y, Xiang X, Shen C, Wang H, Gilbert JA, Chu H*. 2017. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology & Biochemistry, 113: 275-284.

30. Yang T, Adams JM, Shi Y, He J, Jing X, Chen L, Tedersoo L, Chu H*. 2017. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytologist, 215: 756–765.

31. Yang T, Weisenhorn P, Gilbert JA, Ni Y, Sun R, Shi Y, Chu H*. 2016. Carbon constrains fungal endophyte assemblages along the timberline. Environmental Microbiology, 18: 2455-2469.

32. Liu J, Sui Y, Yu Z, Yao Q, Shi Y, Chu H, Jin J, Liu X, Wang G. 2016. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biology & Biochemistry, 95: 212-222.

33. Jing X, Sanders N, Shi Y, Chu H, Classen A, Zhao K, Chen L, Shi Y, Jiang Y, He JS. 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6:8159.

34. Liu J, Sui Y, Yu Z, Shi Y, Chu H, Jin J, Liu X, Wang G. 2014. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biology & Biochemistry, 70: 113-122.

35. 时玉,孙怀博,刘勇勤,侯居峙,朱立平,褚海燕.青藏高原淡水湖普莫雍错和盐水湖阿翁错湖底沉积物中细菌群落的垂直分布[J].微生物学通报,2014,41(11):2379-2387.

36. 时玉,伊艳杰,吴兴泉,张长付.拮抗细菌RB10的鉴定及发酵条件优化[J].河南工业大学学报(自然科学版),2010,31(04):64-67.

37. 时玉.青藏高原的地下王国”[J].生命世界,2016,(06):30-33.

38. 褚海燕,马玉颖,杨腾,张考萍,范坤坤,李云涛,时玉,高贵锋.“十四五土壤生物学分支学科发展战略[J].土壤学报,2020,57(05):1105-1116.

39. 褚海燕,冯毛毛,柳旭,时玉,杨腾,高贵锋.土壤微生物生物地理学:国内进展与国际前沿[J].土壤学报,2020,57(03):515-529.

40. 刘安榕,杨腾,徐炜,上官子健,王金洲,刘慧颖,时玉,褚海燕,贺金生. 青藏高原高寒草地地下生物多样性:进展、问题与展望[J].生物多样性,2018,26(09):972-987.

41. 褚海燕,王艳芬,时玉,吕晓涛,朱永官,韩兴国。土壤微生物生物地理学研究现状与发展态势[J].中国科学院院刊,20173206585-592.