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Abstract Many invasive plant species have high

tolerance to herbivore damage, which can lead to low

impacts of introduced biological control insects. High

herbivore tolerance may be a trait acquired by invasive

plants in their invaded range which makes it difficult to

predict impacts of introduced insects. In this study, we

compared the growth and foliar secondary chemical

responses of invasive and native populations of

Triadica sebifera (Chinese tallow tree) to repeated

damage by specialist or generalist herbivores. We

found repeated damage significantly decreased plant

biomass and increased foliar tannin and flavonoid

concentrations compared to a single damage event.

These effects were significantly stronger with special-

ist damage than with generalist damage but the

magnitudes of these differences were small. Plants

from invasive populations had lower foliar tannins and

higher foliar flavonoids than plants from native

populations and had greater biomass in every damage

treatment. Our results suggest that repeated damage

could suppress the growth of invasive plants with high

tolerance. Thus using multivoltine herbivores as

biological control agents may overcome herbivore

tolerance and increase biological control efficacy.

Keywords Plant–insect interactions � Chemical

ecology � Plant defense � Forest invasive plants �
Biological control

Introduction

Understanding the interactions between invasive

plants and their herbivores is crucial for biological

control of invasive plants. Introduction of host-speci-

fic natural enemies from the native range has been
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regarded as one of the promising approaches to

controlling invasive plants worldwide for more than

100 years (Julien and Griffiths 1998; McFadyen

1998). Although many invasive plants have been

suppressed by introduced insects, the overall biolog-

ical control success rate is not high (McFadyen 1998).

Many introduced insects establish populations on their

target invasive plant but their impact is not sufficient

to curb the invasion.

Though many biotic and abiotic factors have been

implicated in the failure or low impact of biological

control agents, plant tolerance to herbivory is poten-

tially very important but only recently regarded as one

of them (McFadyen 1998). Evolved increased tolerance

due to changes in the growth rates of invasive plants

may be a common phenomenon. Thus, to increase

biological control success, it is critical to overcome

plant tolerance (Milbrath 2008; Striker et al. 2011).

Tolerance is defined as the ability of a plant to

maintain growth andfitness despite tissue damage (Weis

et al. 2000) and is often measured as compensatory

capacity after damage (Rosenthal and Kotanen 1994).

This regrowth ability depends largely on its ability to re-

establish leaves and renew photosynthesis because

plants often do not maintain large stores of energy and

nutrients and they need carbohydrates gained from

photosynthesis to regrow (Olson and Richards 1988).

Repeated damage could effectively suppress plant

tolerance through removal of more leaves and meris-

tems which are crucial for regrowth. Examples of

repeated artificial defoliation being required to impact

invasive plant performance include the invasive liana,

Macfadyena unguis-cati (Raghu et al. 2006), the

invasive vine Vincetoxicum sp. in high light conditions

(Milbrath 2008), and the forage legume, Lotus tenuis

(Striker et al. 2011). After repeated damage, plants may

also need to reallocate resources to produce more

resistance chemicals which may further decrease the

resources available for growth (Underwood 2012).

For high tolerance invasive plants, repeated dam-

age by some biological control agents, if they have

more than one generation per year, could enhance the

impact of herbivory and counter plant tolerance.

However, impact studies in biological control pro-

grams frequently only evaluate the effect of damage

within a single insect generation (Smith 2005; Gerber

et al. 2008; Huang et al. 2011), possibly underesti-

mating the potential of the herbivore to control its host

plant. Previous studies have found that, for some

invasive plants, plants from introduced populations

are able to tolerate herbivore damage better than those

from native ones (e.g. Meyer et al. 2005; Ridenour

et al. 2008; Huang et al. 2010; Wang et al. 2011)

though other species do not have such variation in

tolerance (e.g. van Kleunen and Schmid 2003; Boss-

dorf et al. 2004). It is not known whether invasive

plants from introduced populations also have high

tolerance to repeated damage which is critical for

predicting the impact of multivoltine herbivores if

they are considered as biological control agents. In

addition, repeated damage could also change plant

chemical resistance that may affect the insect com-

munity on invasive plants which could in turn impact

biological control insects (Wang et al. 2011).

Here, we examine the impact of repeated damage by

generalist and specialist herbivores on growth and

defense of Chinese tallow tree Triadica sebifera (L.)

Small [= Sapium sebiferum (L.) Roxb.]. Previous

studies have reported that invasive T. sebifera have

increased tolerance to a single episode of damagewhich

limits herbivore impacts on plant growth (Rogers and

Siemann 2003, 2004, 2005; Zou et al. 2008a, b, 2009;

Wang et al. 2012b). Such damage also induces chem-

icals such as tannins and flavonoids (Wang et al. 2012a).

In this study we use specialist and generalist insect to

damage plants once, twice or three times to simulate the

natural damage by multivoltine insects in the field. We

focus on the impact of repeated damage and expect that

such repeated damage by multivoltine biological con-

trol agents could decrease the plant tolerance. Specially,

we asked the following questions: (i) Does repeated

herbivore damage have larger impacts on plant growth

than single damage? (ii) How do foliar flavonoid and

tannin concentrations respond to repeated herbivore

damage? (iii) Do generalist and specialist herbivores

have similar effects on plant growth and chemical

defenses? (iv) Do plants from the invasive and native

ranges (continental origin) differ in their growth and

defense responses to repeated damage by specialist and

generalist herbivores?

Materials and methods

Study organisms

Native to Asia, Triadica sebifera is a common

perennial tree (Zhang and Lin 1994). It was first
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introduced to Georgia, USA in the late Eighteenth

century for agricultural and ornamental purposes

(Bruce et al. 1997) but has since become a noxious

invasive weed in Florida, Louisiana, Mississippi, and

Texas, USA (USDA/NRCS 2016). T. sebifera dis-

places native plants in grasslands, wetlands, and

forests and forms monospecific stands (Bruce et al.

1997). It has the potential of spreading 500 km

northward beyond current invaded areas (Pattison

and Mack 2008) and to increase in abundance in many

southern forests (Wang et al. 2011). We tested

seedlings in our study because the seedling stage

may play an important role in its invasion success

(Bruce et al. 1997).

Previous studies suggest that T. sebifera has

evolved to be a faster-growing and less herbivore-

resistant plant in response to low herbivore loads in its

invaded range (Siemann and Rogers 2003a,b; Sie-

mann et al. 2006). Studies in the invaded range

indicated that invasive populations of T. sebifera

tolerate artificial and generalist damage more effec-

tively relative to native populations (Rogers and

Siemann 2003, 2004, 2005). In the native range, we

also found that specialist herbivores perform better on

invasive populations but invasive populations have

stronger tolerance to specialist herbivores than native

populations in common garden experiments (Wang

et al. 2011). However, the impact of repeated damage

on T. sebifera growth and resistance has not been

tested so far.

Gadirtha inexacta Walker (Lepidoptera: Noctu-

idae) is a specialist insect feeding on T. sebifera, and it

is potentially a biocontrol agent against T. sebifera

(Wang et al. 2012b). The moth has four or five

generations per year in Hubei province, China. The

eggs of the moth overwinter on branches and leaves

and hatch in May. Larvae feed on leaves, pass through

six instars in approximately 15 days at 26 �C in the

laboratory (Wang et al. 2012b). Larvae can cause

severe damage, especially during the last three instars

(Wang et al. 2012b).

Cnidocampa flavescens Walker (Lepidoptera:

Limacodidae), a generalist defoliator, can also cause

serious damage to T. sebifera. The moth has two to

three generations per year in Hubei, overwintering as a

mature larva in the cocoon. The larva pupate in mid-

May and the adults appear in late-May. The neonate

larvae feed on the lower leaf cuticle, producing small

transparent circular patches. Feeding by late instars

produces large holes on the leaves. The larvae pass

through seven instars in about 30 days at 26 �C in the

laboratory (Wang et al. 2012b).

Seeds and seedlings

The experiments were conducted at Wuhan Botanical

Garden, China in 2010. In late November 2009 we

collected seeds from eight populations across south

China (hereafter referred to as native populations) and

eight populations from the southeast USA (hereafter

referred to as introduced populations, see Supplemen-

tary Table S1). Molecular studies indicated that

populations in the invaded range come from at least

two distinct introduction events. The original intro-

ductions to Georgia and South Carolina were likely

from a southern China population. Later introductions

to the USAwere likely from the northeastern part of T.

sebifera’s range (DeWalt et al. 2011). Therefore, we

consider the populations used in this experiment to be

representative of the genetic variation in the native and

introduced range.

For each population, seeds were collected from four

to ten haphazardly selected T. sebifera trees. To

evaluate the potential impacts of seed provisioning on

seedling performance, 20 seeds from each population

were weighed. Seed weights did not differ significantly

between native and introduced populations (nested

ANOVA, population was nested within continent,

F1,14 = 1.652, P = 0.246). Therefore we can be con-

fident that the observed differences in plant perfor-

mance can be attributed to the impacts of herbivory.

We removed the seed’s waxy coats by soaking in water

with laundry detergent (10 gl-1 Diaopai laundry

detergent, Wuhan, China) for two days. Then we

buried the seeds in sand at a depth of 5–10 cm and

placed them in a refrigerator (4 �C) for 40 days.

Experimental design

On April 15 2010, seeds of the 16 populations were

planted and maintained in a greenhouse for six weeks.

Similar-sized healthy seedlings were selected on June

20 2010 and transplanted individually into pots (height:

16 cm, diameter: 25 cm) containing growing medium

(50 % locally collected field soil and 50 % sphagnum

peat moss) and placed in an outdoor common garden.

Each plant was enclosed by a nylon mesh cage (100 cm

height; 27 cm diameter) to exclude herbivores.
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Seedlings were randomly assigned to one of seven

different treatments in a factorial design with two

factors (herbivore type [generalist or specialist] and

damage frequency [1, 2, or 3]) plus undamaged

controls. In total there were 560 seedlings ([8 ? 8] 9

[2 9 3 ? 1] 9 5 replicates).

On 16 July, three to five third-instar larvae of G.

inexacta orC. flavescenswere released into cages with

seedlings assigned to an herbivore treatment (G1, G2

or G3 for damage by the generalist C. flavescens once,

twice and three times, respectively; S1, S2 or S3 for

damage by the specialist G. inexacta once, twice and

three times respectively). The survival of larvae was

monitored and those that died during the course of the

experiment were replaced with the corresponding

larval stage. When larvae had eaten all leaves of the

seedling (100 % damage), they were removed. On 14

August, larvae were added for the second damage

event (G2, G3, S2, or S3) and on 12 September, larvae

were added for the third damage event (G3 or S3). On

25 October, we harvested all plants (including leaf,

stem and root) which were oven dried to a constant

weight at 40 �C for five days to determine their dry

biomass. The dried leaves were used for chemical

analyses.

Chemical analyses—flavonoids and tannins

We measured five flavonoids (quercetin, isoquercetin,

quercetin glycoside, kaempferitrin and kaempferol)

with high performance liquid chromatography

(HPLC) following (Wang et al. 2012a). We purchased

quercetin, isoquercetin, and kaempferol standards

from Sigma-Aldrich (St. Louis, MO, USA) and

obtained quercetin glycoside and kaempferitrin stan-

dards from the National Institutes of Food and Drug

Control (Beijing, China). All standards had puri-

ty C97 % and were suitable for HPLC. We dried and

ground leaves, then weighed them and soaked them for

24 h in a methanol: 0.4 % phosphoric acid in water

solution (48:52, v:v). We filtered solutions through a

0.22 lm membrane. We injected filtered extract

(20 ll) into a Dionex ultimate 3000 series HPLC

(Dionex, Sunnyvale, CA, USA) with a ZORBAX

Eclipse C18 column (4.6 9 250 mm, 5 lm, Agilent,

Santa Clara, CA, USA). We eluted flavonoids with a

constant flow of 1.0 ml min-1 with a methanol: 0.4 %

phosphoric acid in water gradient as follows:

0–10 min, 48:52 (v:v); 10–18.5 min, 65:35 (v:v). We

recorded UV absorbance at 254 nm. We used peak

areas of standards of known concentrations to obtain

percent dry mass for each of the five flavonoids. We

calculated total flavonoid concentration, as percent dry

mass, as the sum of these five concentrations.

We measured four tannins (gallic acid, catechin,

tannic acid and ellagic acid) with HPLC following

Wang et al. (2012a). We purchased standards suit-

able for HPLC (i.e. with a purity C95 %) from Sigma-

Aldrich. We dried, ground, and weighed leaves then

extracted them ultrasonically in a 50 % aqueous

methanol solution for 30 min. We filtered the mixture

through a 0.45 lm membrane and injected the extract

(20 ll) into the same HPLC system described above.

We eluted tannins at a constant flow of 1.0 ml min-1

with methanol: 0.1 % phosphoric acid in water

gradient as follows: 0–7.5 min, 30:70 (v:v);

7.5–17 min, 55:45 (v:v). We measured UV absor-

bance at 279 nm for gallic acid, catechin, and tannic

acid and at 260 nm for ellagic acid. We used peak

areas of standards of known concentrations to obtain

percent dry mass for each of the four tannins. We

calculated total tannin concentration as percent dry

mass as the sum of these four concentrations.

Statistical analysis

We used mixed model ANOVAs to examine the

effects of plant origin (continent), damage frequency,

herbivore type nested within damage frequency, and

their interactions on chemical concentrations and plant

biomass.We treated population nested within origin as

a random effect. We used population (origin) as the

error term to test for a significant effect of origin. We

included herbivore type as a nested term in order to

include the undamaged controls in the analyses.

Because the contrast between no damage and damaged

is fitted by the damage frequency term, the nested

herbivore term corresponds to herbivore identity

within a damage frequency. This approach does not

allow the fitting of a separate herbivore type by

damage frequency term but in reduced models that

excluded undamaged controls this term was only

significant for biomass (see Supplementary Table S2).

We used adjusted means partial difference tests to

examine whether treatments differed for predictors

with more than two levels. All data analyses were

performed with the statistical analysis software SAS,

ver. 9.1 (SAS Institute Inc. USA).
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Results

Impact of repeated damage on plant biomass

For invasive populations, plant biomass decreased

with damage frequency for both the specialist and

generalist herbivore and biomass was lower with

specialist feeding than with generalist feeding when

damage frequency was one or three (Table 1; Fig. 1).

For native populations, biomass decreased with all

types of herbivore damage except when damage

frequency was one by the specialist (Table 1;

Fig. 1). For damage frequency two, biomass was

lower with specialist feeding compared to generalist

feeding but the two herbivores had similar impacts at

one or three feedings (Fig. 1). For damage by the

specialist, plant biomass was lower when damage

frequency was greater than one, while plant biomass

for damage frequency three was lower than that for

lower damage frequencies for damage by the gener-

alist (Fig. 1). Plants from invasive populations were

larger than those from native populations in every

damage treatment (Fig. 1).

Impact of repeated damage on leaf chemicals

Specialist herbivore damage induced more tannins

and flavonoids than generalist herbivore damage

(Table 1; Fig. 2a,c, see Supplementary Table S2,

Fig. S1). Invasive populations had lower foliar tannin

concentrations than native populations at every

damage frequency but concentrations were compa-

rable in the absence of damage (Table 1; Fig. 2b).

Repeated damage significantly increased foliar tan-

nins for both invasive and native populations but

plants from invasive populations increased tannins

more gradually with damage than ones from native

populations did (Table 1; Fig. 2b). Flavonoid con-

centrations were comparable for undamaged plants
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Fig. 1 Average (?SE) effect of damage frequency (0, 1, 2 or 3

times) by a generalist (Cnidocampa flavescens) or specialist

herbivore (Gadirtha inexacta) on plant biomass of invasive and

native Triadica sebifera populations. Each herbivore feeding

represents 100 % leaf damage. Bars with shared letters indicate

means that were not significantly different in post-hoc tests in

the nested model that included controls (P C 0.05)

Table 1 The influence of continental origin of Triadica

sebifera tree populations [Cont], damage frequency [Dam],

herbivore type nested in damage frequency [Herb (dam)], and

their interactions on plant biomass, leaf tannins and flavonoids

concentrations in a mixed model ANOVA

Effect Df Biomass (g) Tannins (% dw) Flavonoids (% dw)

F P F P F P

Cont 1,14 6.97 0.0194 4.72 0.0475 1.05 0.3219

Dam 3,532 148.80 <0.0001 110.26 <0.0001 69.94 <0.0001

Herb(dam) 3,532 6.88 0.0001 10.25 <0.0001 7.19 <0.0001

Cont9dam 3,42 1.06 0.3746 5.91 0.0019 2.67 0.0594

Cont9herb(dam) 3,42 4.98 0.0048 2.63 0.0623 0.44 0.7240

Significant results are shown in bold
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and plants damaged a single time but they increased

with higher damage frequency, with the concentra-

tions significantly higher with more damage events

and for specialist feeding compared to generalist

feeding (Table 1; Fig. 2b).

Discussion

We found repeated damage significantly decreased

plant biomass and increased foliar tannin and

flavonoid concentrations compared to a single damage

event. These effects were significantly stronger with

specialist damage than with generalist damage but the

magnitudes of these differences were small. Plants

from invasive populations had lower foliar tannins and

higher foliar flavonoids than plants from native

populations and had greater biomass in every damage

treatment.

Previous studies have reported that, relative to native

populations, invasive T. sebifera populations have

increased tolerance to damage which will limit the

herbivore’s impact on plant growth under single

damage (Rogers and Siemann 2003, 2004, 2005; Zou

et al. 2008a, b, 2009; Wang et al. 2012b). Invasive

tallow populations are able to maintain higher growth

and fitness after damage and often have stronger

compensatory capacity than native populations (Rogers

and Siemann 2005). For some other invasive plants,

plants from introduced populations were also reported

to have higher tolerance to herbivore damage than those

from native ones (e.g.Meyer et al. 2005; Ridenour et al.

2008). Although T. sebifera could regrow quickly even

after serious damage such as 100 % leaf area being

removed (Wang et al. 2012b), this regrowth ability is

also limited by energy and nutrients because they need

carbohydrates gained from photosynthesis to regrow

(Olson et al. 1997). Previous studies have found that

Fig. 2 Average (?SE) effect of (a) damage and (b) number of

times damaged (0, 1, 2 or 3 times) by a generalist (Cnidocampa

flavescens) or specialist herbivore (Gadirtha inexacta) on

invasive and native Triadica sebifera foliar tannin and (c) foliar

flavonoid concentrations. The units for foliar chemical concen-

trations are % dry weight (dw).Bars with shared letters indicate

means that were not significantly different in post-hoc tests in

the nested model that included controls (P C 0.05)
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repeated damage could effectively suppress plant

tolerance through removal more leaves and meristems

which are crucial for regrowth (Raghu et al. 2006;

Milbrath 2008).

Repeated damage is expected to remove more

leaves and meristems than single damage, because

after repeated damage, plants need to restructure more

new leaves to get enough nutrients and also need to

reallocate resources to produce more resistance chem-

icals to defend against herbivores. Thus, multiple

damage may induce high concentration of defense

chemicals (Underwood 2012) which may further

decrease the resources available for growth, because

of resource trade-offs between defense and growth

(see reviews by Stamp 2003 and Koricheva et al.

2004). It is possible, however, that such increases in

defense chemicals could reduce the amount of damage

from subsequent herbivore feeding events. In this

study we found repeated damage by herbivores could

significantly increase the concentration of tannins and

flavonoids in leaves. To respond to repeated damage,

T. sebifera might reallocate more resources to chem-

ical resistance, resulting in reduced growth. The cost

of constitutive and herbivore-induced chemical

defenses has been reported for invasive plants (Zas

et al. 2011; Sampedro et al. 2011), especially in low

resource availability conditions. So in some resource

limited habitats, repeated damage could have higher

impact on the growth of invasive plants.

Resource availability (light, water, nutrients, etc.)

that influences the growth and tolerance of invasive

plant species (Dukes and Mooney 1999; Davis et al.

2000; Rogers and Siemann 2003) may affect the

outcome of biological control (Blumenthal et al. 2009).

From previous studies we found that invasive T.

sebifera populations have higher tolerance to herbi-

vores than native populations under light and shade

conditions (Wang et al. 2011) but when damaged

several times under low light levels, they regrew

slowly and their mortality significantly increased

(Wang et al. 2012a, b). Thus in some conditions of

low resource availability, repeated damage could have

a greater impact on invasive plants, likely decreasing

their competitive advantage over native forest species.

Our findings have very important implications for

management of invasive plants. Weed biological

control programs can fail because introduced biolog-

ical control agents may not suppress the regrowth of

invasive plants that have high tolerance to herbivory.

Introduced herbivores may become abundant but not

effectively suppress target weeds, some of which

could also lead to direct and indirect non-target effects

(Pearson and Callaway 2003). However, repeated

defoliations could effectively suppress target weeds,

and reduce the risk of non-target effects. In addition,

our results suggest that augmentative biological con-

trol, i.e., periodically releasing natural enemies to

control target pests (Bale et al. 2008; van Lenteren and

Bueno 2003), may be an effective way to control

invasive plants with high tolerance. In conclusion,

repeated damage by multiple releases of the same

insects or by release of multivoltine herbivores may

decrease the invasive plant tolerance and improve

control efficacy.
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