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Climate change is predicted to increase the frequency and

impact of plant invasions, creating a need for new control

strategies as part of mitigation planning. The complex

interactions between invasive plants and biocontrol agents

have created distinct policy and management challenges,

including the effectiveness and risk assessment of biocontrol

under different climate change scenarios. In this brief review,

we synthesize recent studies describing the potential

ecological and evolutionary outcomes for biocontrol agents/

candidates for plant invaders under climate change. We also

discuss potential methodologies that can be used as a

framework for predicting ecological and evolutionary

responses of plant-natural enemy interactions under climate

change, and for refining our understanding of the efficacy and

risk of using biocontrol on invasive plants.
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Introduction
Climate change and plant invasions significantly impact

biodiversity, human welfare, and the economy, making it

critical to predict the interactive effects of climate change

on invasive plants and their management. Anthropogenic

climate changes driven by greenhouse gas emissions

include alterations in temperature, precipitation, CO2,

insolation and the frequency of extreme climatic events

(i.e., flood, fires, intense storms, heat waves). These

changes can influence multiple stages of the plant inva-

sion process, from initial introduction through
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establishment, spread and impact [1,2]; consequently,

interactions between climate change and plant invasion

may have a profound influence on species interactions,

ecosystem services and people’s livelihoods [3].

Classical biocontrol (’biocontrol’ hereafter) has proven to

be an effective and cost-efficient approach to mitigating

plant invasions [4], but consideration of how climate

change may alter the dynamics between plant hosts

and biocontrol agents is relatively unexplored. Biocontrol

involves the deliberate release of specialist natural ene-

mies from the plant invader’s native range to reduce its

abundance in the introduced range below an ecological or

economic threshold [4]. The complexity of interactions

involving invasive plants and the biotic and abiotic com-

ponents of the invaded habitats under different climatic

scenarios has created distinct policy and management

challenges including the effectiveness of biocontrol. Cli-

mate change is expected to impact invasive weeds and

biocontrol agents (e.g., through effects on metabolism,

phenology, physiology) and their interactions as well as

the effects on non-target attack of native plant species.

In parallel to the growing concern of climate change and

plant invasions, there has been a large increase in studies on

climate change and biocontrol over the past 10 years (Appen-

dix Fig. S1). However, our understanding of the response of

these plant-herbivore interactions to the full complement of

climate-driven changes remains rudimentary. Multiple

reports suggest that climate change may promote plant

invasions and increase their impact [5], while other studies

report both positive and negative effects of climate change

on the performance of biocontrol agents, with various con-

sequences for their efficacy (Table 1; Figure 1).

The goal of this paper is to review the available evidence of

climate change effects on weed biocontrol outcomes, pro-

vide an overview of thebiocontrolmethodologies used with

keyexamples,discuss potential ecological andevolutionary

outcomes for the interaction of plant invaders and their

biocontrol candidates/agents under climate change, and

raise awareness of how climate change may alter biocontrol

efficacy and risk to increase our ability to predict these

outcomes through pre-release assessment.

Climate change and weed biocontrol: a
complex interplay
Ecological effects

Climate change has the potential to alter interactions of

invasive weeds and biocontrol agents by phenotypic
www.sciencedirect.com
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Table 1

Examples of studies on weed biocontrol under climate change

Issues Methods Climate change aspects host invasive

plant

Biocontrol

agent

Findings Ref.

Temp. CO2 precipitation

Ecological

effects

Chambers/lab û Parthenium

hysterophorus

Zygogramma

bicolorata

Occurrence of heat waves may

influence the performance and

survival of Z. bicolorata

[64��]

Common garden û û Alternanthera

philoxeroides

Agasicles

hygrophila

Minor effects of elevated CO2 on the

efficacy of the biocontrol agent

[65�]

Field experiment û Centaurea diffusa Larinus

minutus

Elevated CO2 increased plant

fitness, but also agent density

[66��]

Evolutionary

aspects

Common garden û Jacobaea

vulgaris

Longitarsus

jacobaeae

post-introduction climate

adaptation by life-history changes

[36]

Efficacy

prediction

Species distribution

model

û û û Ambrosia

artemisiifolia

six potential

agents

The spatial mismatch of A.

artemisiifolia and its potential agents

is further amplified by climate

change

[38��]

Population dynamics

model

û Prosopis spp. Evippe spp. The effect being dampened by

herbivory suppressing seed

production irrespective of preceding

rainfall

[67��]

non-target

attack

Field survey and field

experiment

û Alternanthera

sessilis

Agasicles

hygrophila

Climate warming increases

biocontrol agent impact on a non-

target species

[22��]

Figure 1
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Impact of climate change on plant invasions, weed biocontrol and

their interactions (dash lines) as evidenced from literature. Signs of 0/

+/� represent no-, positive and negative effects.
changes in traits (physiology, biochemistry, life history,

phenology) or by changing the abiotic and/or biotic envir-

onments in which interactions occur, both aboveground

and belowground. This in turn can alter the frequency,

timing, intensity, and duration of interactions between

plant invaders and biocontrol agents and so the impact of

agents on plant invaders may be enhanced or reduced.

For instance, elevated CO 2 may change the amount of

herbivore damage by altering plant primary metabolism

(e.g., increased tissue C:N, which typically increases

herbivore consumption [6,7]). CO2-driven changes in

secondary metabolism that underlie plant chemical
www.sciencedirect.com 
defenses [8,9�,10] or volatiles [11] may also influence

herbivore damage (e.g., phenolics typically increase

under elevated CO 2 and can reduce herbivore attack

[12], but other chemicals have variable responses [12]).

Elevated CO 2 also often increases plant growth rates

[9�,13] which may contribute to increased plant tolerance

to herbivore damage [7,14]. Increased temperature, and

potentially longer growing seasons, can change the inter-

actions of biocontrol agents and weeds by increasing the

number of generations per year of the agents [15] and

potentially increase its impacts on the weed host

[6,16,17]. Because plants differ in their susceptibility to

damage at different life stages (e.g., vegetative growth

versus seed production) changes in timing of emergence

of insects and weeds with climate change could modify

the consequences of insect feeding [18]. Changes in

geographic distributions, especially as the climate con-

tinues to warm and extreme events become more com-

mon, can impact interactions between biocontrol agents

and weeds as differential migration rates of insects, host

plants, higher trophic levels and other species create

novel biotic interactions and new above- and below-

ground communities [19,20,21�,22��,23]. The net effect

of climate change on weed biocontrol will depend on the

relative strengths of these various responses to multiple

factors of climate change [6].

Evolutionary aspects

Recent studies have highlighted that rapid evolutionary

change can occur in both invaders and their biocontrol

agents in response to a shift in environmental conditions

[24,25]. Many cases of rapid adaptive evolution have been

reported for invasive plants, including shifts in resource
Current Opinion in Insect Science 2020, 38:72–78
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allocation from defense to growth [26], local adaptation to

new habitats [27] and climates such as by the evolution of

phenotypic clines along climatic gradients [28], the evo-

lution of greater dispersal ability [29] and increases in the

rate of population growth and expansion [30,31��]. Evo-

lutionary adaptation is also expected for biocontrol agents

when they encounter novel environments or changes in

climatic conditions, especially for species with short gen-

eration times [31��,32,33�].

We argue that evolutionary studies should be better

integrated into the different stages of a weed biocontrol

program (Figure 2). For example, by using reciprocal

transplants or common garden experiments coupled with

population modeling, researchers could match up climat-

ically adapted biocontrol candidates with their target

release environments, or evaluate their potential evolva-

bility under changing selection pressures (Figure 2). High

genetic variance in life history and abiotic stress tolerance

traits may allow researchers to screen for strains or popu-

lations that could adapt to future climatic conditions [34].

For instance, Reddy et al. [35��] compared four biotypes of

the weevil, Neochetina Eichhorniae Warner (Coleoptera:

Curculionidae), a biocontrol agent of water hyacinth,

Eichhornia crassipes (Mart.) Solms. They found variation

in tolerance to cold among populations and suggested that

the introduction of N. Eichhorniae from Australia into

northern California would result in climate matching

between source and release environments and increase

the distribution and densities of weevils, and by this

improve biocontrol efficacy. Szács et al. [36] found

post-introduction climatic adaptation through life-history

changes in aestival diapause and shifts in phenology in

Longitarsus Jacobaeae Waterhouse (Coleoptera:Chrysome-

lidae), a biocontrol agent of Jacobaea vulgaris Gaert.

In the following, we explore how specific studies of

ecological and evolutionary processes during a weed
Figure 2

Research opportunities under climate changWBC Processes 

Target weed ecology

Exploration for potential 
WBC agents

Selection of effective WBC
agents

Host-specificity testing

Agent release & distribution

Agent evaluation

Phenotype environment correlations to select
populations of the biocontrol agent pre-adapted to
conditions in the introduced range under climate
change and release in areas where the plant inva
is expected to increase/spread under climate chan

Host specificity/range under climate change

Selection of efficient agents under climate chang
with regard to effect on plant performance,
abundance and distribution        

Schematic overview of processes in a weed biocontrol (WBC) project, resea

potential methods (SDM: species distribution models).
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biocontrol program can incorporate implications of cli-

mate change scenarios, and help inform the selection of

effective and safe agents.

Weed biocontrol efficiency under climate
change
Ecological context

Responses of plant and natural enemy populations to

climate change through short-term (within-generation)

shifts in their geographical distribution or timing of

growth and species interactions can be predicted through

field surveys along latitudinal transects, experimental

measurements under controlled conditions, and through

predictive modeling. For example, using field surveys

along latitudinal transects and simulated warming experi-

ments, Lu et al. [22��] showed that climate warming may

allow the beetle Agasicles hygrophila Selman and Vogt

(Coleoptera:Chrysomelidae), a biocontrol agent of the

invasive weed Alternanthera philoxeroides (Mart.) Griseb,

to expand its range and benefit biocontrol in regions that

are currently too cold for the insect. However, because A.
philoxeroides will also expand its range further north in

response to warming, and the plant tolerates cold better

than A. hygrophila, the overall effect of biocontrol may be

weak in some higher latitude regions if the insect cannot

establish robust populations due to the cold climate.

Species distribution models (SDMs) [37] are often used to

predict the efficacy of potential biocontrol agents in

current and future conditions by measuring the overlap

of predicted habitat suitability with that of their target

host plant. For example, based on habitat suitability in

SDMs, the invasive plant Ambrosia artemisiifolia L. is

predicted to experience decreased geographic overlap

with six biocontrol candidates under climate change in

its introduced European range [38��]. SDMs can also use

climate suitability to predict demographic rates and the

ability of biocontrol agents to quickly attain high
e

der
ge              

e

Potential methods

Survey
Enlarge the area to search for potential agents

Experiments
Common garden under different climate conditions

Biotic interactions under different climate conditions

Artificial selection for genotypes adapted to future climate conditions

Models
Population dynamicsunder different climate conditions

SDM for both current and future climate scenarios

Mechanistic models including climate change scenarios
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population densities, which are critical for significant

impacts on the target plant invader [39] and management

success [40]. Moreover, combining SDM and mechanistic

(process-based) models by integrating physiological mod-

els of insect development into SDMs based on habitat

suitability may enable more robust predictions of both

range shifts [41] and population abundances [42,43].

Using such a combined approach, Augustinus et al. [44]

identified the climatic factors limiting the population

build-up of Ophraella communa Lesage (Coleoptera: Chry-

somelidae), a biocontrol candidate of invasive A. artemi-
siifolia, and predicted its potential population density

across its suitable European range and the relative impor-

tance of those climatic factors on population growth.

Population dynamics models are also commonly used

to explore and predict changes in population densities

over time, such as Integral Projection Models (IPMs) [45]

and DYMEX (Hearne Scientific Software) [46]. Kriticos

et al. [47] used a process-based population dynamics

model to predict that invasive Buddleja davidii Franch.

would succumb rapidly to herbivore damage by its bio-

control weevil Cleopus japonicus Wingelmüller (Coleop-

tera: Curculionidae) under warming conditions. Further

studies would benefit from integrating theoretical model-

ing, physiological/behavioral experiments and experi-

mental population studies under climate change condi-

tions (i.e., latitudinal space-for time and climatron/FACE

(free-air CO2 enrichment) type experimental settings

[13]) into a biocontrol program (Figure 2).

Evolutionary context

Examples of evolutionary responses to climate change are

accumulating, suggesting some organisms are capable of

rapid evolution on a time scale concomitant with ongoing

changes in climate [28,32]. While the tools of ecological

genetics are able to test for and identify genetic differ-

ences attributable to local environments, predicting

future responses is more difficult. The breeder’s equation

postulates that the response (R) of a population to selec-

tion on a quantitative trait will be proportional to the

product of the trait heritability (h2, the ratio of additive

genetic variance, VA, to total phenotypic variance, VP) and

the strength of selection (S), whereby R = h2S [48]. Thus,

predicting evolutionary responses of weed biocontrol

efficacy under climate change requires information about

the current amount of standing genetic variance present

for traits involved in the agent-host interaction in both the

native and introduced ranges that may become mis-

matched under climate change. Accurate predictions

may require knowledge of how this variation is spatially

distributed among geographic regions of current (and

possibly future) overlap. In addition, genetic correlations

among traits create tradeoffs that result in indirect selec-

tion that may constrain the response of traits to direct

selection during climate change [49,50]. Given these

biological complexities, a promising approach is to use

experimental evolution or artificial selection experiments
www.sciencedirect.com 
that measure the change in trait means over multiple

generations in response to selection under controlled

conditions [51]. Such experiments may allow the direct

measurement of each population’s evolvability in

response to selection on a focal trait, such as host plant

life history or allocation to growth and defense, as well as

revealing changes in correlated traits that may have

evolved as a result of indirect selection [52].

While it would be logistically challenging to carry out

experimental evolution for both host plants and biocon-

trol agents, one feasible solution might be to evolve

agents reared on host plant tissues developed under

controlled growing conditions mimicking climate change

(e.g., earlier spring warmup, drought stress). Tracking the

across-generation response of traits measured in the bio-

control agent to this change in selective environment

would allow a realized measure of evolutionary potential

that integrates over existing trait correlations. This

approach could be coupled with the strategy of ‘evolve

and re-sequence’ [53], in which the genomic targets of

selection and evolutionary response can be revealed by

performing genome-wide DNA or RNA (transcriptomic)

sequencing of population pools to test for gene-specific

changes in allele frequencies from the start to the end of

the experiment. This would require large experimental

populations of the biocontrol agent (in the several thou-

sands or more); thus, logistics and permitting may neces-

sitate that such studies be restricted to the native range

before the introduction of biocontrol, or perhaps in the

introduced range in cases where biocontrol has already

been accidentally introduced. Such an approach could be

particularly useful for identifying large effect genetic

variants that might serve as useful biomarkers for genes

in biocontrol agents that are likely to be responsive to

selection under changing climates. Traits such as host

plant chemical defenses or insect metabolic genes that

detoxify these compounds would be ideally suited

towards this goal; however other more quantitative forms

of plant defense and many other life history traits are

likely to be highly polygenic [54], and thus better suited

to a quantitative genetic framework.

Recently, the integration of genomic polymorphism data

with SDMs have enabled modeling intra-specific varia-

tion in species-climate relationships, including the poten-

tial to identify which areas within a species’ geographic

range may become most affected by a change in climate

[55,56]. If local selection by climate has shaped the

genomic diversity of the plant host, then genomics-

enabled SDMs could help predict portions of the host

range that could be most vulnerable to short-term fitness

impacts from climate change. Genomics-enabled SDMs

of biocontrol agents may also be useful in predicting the

best match between source and release climates. Another

possibility involves the use of geographic variation in host

trait expression (for example, in palatability or defense) as
Current Opinion in Insect Science 2020, 38:72–78
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predictors of genomic variability underlying local adapta-

tion of the agent to its host in the native range [57]. This

type of an approach could help reveal potential co-evolu-

tionary hotspots between host plants and their biocontrol

agents that could be used to target agent sources in the

native range and release locations in the introduced range.

An important caveat of all SDM methods (genomics-

enabled or otherwise) is that these models are inherently

correlative, and thus model predictions require careful

validation testing before making changes in conservation

priorities or management [58,59]. Further, SDM predic-

tions of shifts in suitable ranges or genomic vulnerability

of particular populations under climate change are likely

to be most useful for short-term projections (relative to

the generation time and dispersal distances of the organ-

isms), particularly for biocontrol agents with short gener-

ation times that may be capable of rapid evolution relative

to that of the host plant.

Climate change and non-target attack of
biocontrol agents
A few studies reported non-target attack of intentionally

released or actively redistributed weed biocontrol agents

[60�] that resulted in direct negative effects on native

plant species [61,62], or negative indirect effects [63]. In a

recent review, Hinz et al. [60�] showed that incidences of

unpredicted non-target attack decreased over time and

this trend is thought to continue with scientific advance-

ment. Their results suggest that appropriate selection of

test species could have avoided more than 90% of unpre-

dicted non-target attack. Incorporating climate change

factors may further improve such predictions in the

future. This is because climate-induced shifts in the

synchrony of plant–insect interactions could affect insect

distribution and abundance on invasive and native plants

that may alter non-target effects in biocontrol. For

instance, Lu et al. [22��] showed that elevated tempera-

ture can shift the phenology of the non-target native

plant, Alternanthera sessilis Linn. from annual to perennial

and increase overwintering, damage and impact of the

biocontrol agent A. hygrophila on seedling recruitment.

However, warming alters the interactions between inva-

sive A. philoxeroides and native A. sessilis and shifts the

plant community from invader-dominated to native-dom-

inated, but only in the presence of A. hygrophila as a result

of the disproportionate increases in herbivory on the

invader [21�]. This suggests that biocontrol may enhance

the competitive ability of native plants under climate

change. Thus, climate change could substantially alter

the interactions of invasive plants, native species and

biocontrol agents and the ‘net’ non-target effects should

be carefully assessed by field monitoring, common garden

experiments, population dynamics models and SDMs.

Climate change affects the likelihood of new invasions

(e.g., disturbance of communities) directly by changing
Current Opinion in Insect Science 2020, 38:72–78 
invasive plant distribution, growth and reproduction, and

indirectly through modifying plant-insect interactions.

Understanding responses of invasive plants and their

natural enemies to climate change is critical for future

biocontrol of invasive plants. The effects of climate

change on weed biocontrol management are complex

(positive, negative or neutral), creating a particular chal-

lenge for predicting its efficacy and risk. Although many

current pre-release tests are robust in predicting biocon-

trol efficacy and non-target effects, incorporating climate

change factors may allow researchers to predict how they

will affect the phenology, distribution and abundance of

biocontrol agents and invasive and native plants together

with their interactions and biocontrol outcomes. How-

ever, such studies (Figure 2) would greatly benefit from

partnerships of biocontrol practitioners with evolutionary

biologists and modelers in academia.
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42. Keith DA, Akç akaya HR, Thuiller W, Midgley GF, Pearson RG,
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