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Rapid global environmental changes could exacerbate the impacts of invasive plants on
indigenous plant diversity, especially for freshwater ecosystems characterized by relatively
simple plant community structures with low bioresistance. However, the abiotic and biotic
determinants of plant diversity in aquatic invaded habitats remain unclear. In this study, we
measured four a-species diversity indices (the Patrick richness index, Shannon–Wiener
diversity index, Simpson diversity index, and Pielou evenness index) in aquatic plant
communities invaded by Eichhornia crassipes in southern China. We also recorded eight
environmental parameters of these communities (longitude, latitude, elevation, dissolved
oxygen, water conductivity, nitrate nitrogen, temperature, and precipitation), together with
nine biotic traits of E. crassipes [abundance, invasion cover, height, total carbon (C)
content of the leaves and stems, total nitrogen (N) content of the leaves and stems, and
the C:N ratio of leaves and stems]. We then used regression analysis and redundancy
analysis (RDA) to determine the dominant factors related to plant diversity. We found that
the environment significantly affected E. crassipes abundance, height, coverage, stem
carbon, and tissue nitrogen, while the leaf C:N stoichiometric ratio was relatively stable.
Increasing longitude significantly increased plant diversity, while elevated dissolved
oxygen and precipitation slightly improved plant diversity, but increased elevation
caused negative effects. E. crassipes invasion significantly decreased all four diversity
indices. Increases in E. crassipes coverage and leaf C:N strongly decreased plant
diversity, and increased abundance slightly decreased diversity. Our study indicates
that both the changing water environment and the properties of the aquatic invasive plants
could have significant impacts on plant diversity. Thus, more attention should be paid to
aquatic invasion assessment in lower longitudinal regions with lower native
hydrophyte diversity.
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INTRODUCTION

Global change, such as climatic warming, nitrogen deposition,
and extreme hydrological events, could optimize the ecological
and physiological traits of alien species, greatly facilitating their
introduction and establishment in new habitats (Wu and Ding,
2019; Probert et al., 2020). As an emerging driver of global
change, plant invasions alter species interactions and threaten
plant diversity and ecosystem functioning worldwide, causing
serious damage to the associated microhabitats (Ding et al.,
2008; Sardans et al., 2017; Bernard-Verdier and Hulme, 2019).
According to previous studies, many factors that affect the
impacts of invasive plants on native plant diversity can be
classified into two main categories. One of them is the spatial
environmental heterogeneity, which emphasizes abiotic factors
such as latitude, nitrogen, climate warming, and precipitation
(Pysěk et al., 2005; Wu et al., 2016; Wu et al., 2017; Budzyńska
et al., 2019). For instance, warming could increase the
interspecific competitiveness of invasive plants, while the
increasing latitude might exacerbate their enemy releases at
high latitudinal regions with colder climate (Lu et al., 2013;
Allen et al., 2017; Wu et al., 2017). The other is invasive
plant traits that determine their invasiveness, including
phenotypic plasticity, biomass allocation, and fecundity, as
invasive plants in invaded habitats usually have the higher
abundance, individual size, seed output, and germination
than in their origins (Godoy et al., 2012; Rejmánková et al.,
2018). Moreover, higher plant diversity could confer biotic
resistance against plant invasions at regional scales, while
global environmental changes may significantly alter the
physiological and/or ecological traits of invasive plants and
exacerbate their negative impacts on native cooccurring plants
(Byers and Noonburg, 2003; Wu and Ding, 2019). Thus,
exploring the abiotic and biotic determinants of plant
diversity in invaded ecosystems is critical for predicting plant
invasions and conserving native biodiversity under rapid global
change (Wu et al., 2017; Rejmánková et al., 2018).

Relative to terrestrial ecosystems, the fluid hydrological
connectivity in aquatic ecosystems may accelerate nutrient cycling
and transport, which would promote the growth of aquatic invasive
plants by providing more suitable environments in which they may
spread, particularly for free-floating species such as Eichhornia
crassipes (Gao et al., 2013; Chappuis et al., 2014; Anufriieva and
Shadrin, 2018; Wu and Ding, 2019). Because the species richness of
aquatic floras is much lower than that of their terrestrial congeners,
aquatic communities may be more vulnerable to alien plant
invasions (Santamarıá, 2002; Wu et al., 2017). For example,
invasion by E. crassipes could significantly reduce native plant
diversity in freshwater habitats by resource competitions,
changing indigenous community structures and occupying vacant
niches (Villamagna and Murphy, 2010; Lolis et al., 2020).
Furthermore, many aquatic invasive plants respond more
dramatically to changes in the water environment than their
native cooccurring congeners because as opportunistic species,
they usually exhibit higher growth, reproduction, and
competitiveness in destabilized aquatic ecosystems with resource
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fluctuations (e.g., elevated temperature, precipitation, and nitrogen
levels) (Collinge et al., 2011; Sorte et al., 2013; You et al., 2014). For
instance, a high input of nitrate nitrogen (NO3

−) to Cherry Lake in
Australia significantly increased the total biomass accumulation
and competitive ability of invasive Phragmites australis over those of
the accompanying native plants, causing it to largely displace the
native species, leading to plant diversity loss in the aquatic
ecosystems (Uddin and Robinson, 2018). Finally, both water
quality parameters, such as dissolved oxygen and conductivity
(Rejmánková et al., 2018; Pulzatto et al., 2019), and superior
growth and/or physiological traits (e.g., greater height, abundance,
species cover, specific leaf area, nitrogen content, and ratio of
carbon/nitrogen) (Fan et al., 2013; Lishawa et al., 2017; Wu et al.,
2017) also affect the performance of aquatic invasive plants and
their ecological effects. However, studies evaluating the impacts of
invasive plants on native plant diversity on the basis of habitat
conditions combined with invader properties are relatively rare
(but see Lembrechts et al., 2018).

Water hyacinth, E. crassipes, which is a free-floating aquatic
macrophyte native to South America, has widely invaded freshwater
systems in over 50 countries (Villamagna andMurphy, 2010). It has
been listed as one of the most detrimental aquatic invasive plant
species in southern China (Ding et al., 2006; Ding et al., 2008; Bai
et al., 2013). E. crassipes often covers the water surface, obstructs
rivers, decreases dissolved oxygen, reduces native aquatic plant
diversity and even threatens human health by providing a refuge
for mosquitoes (Chandra et al., 2006; Villamagna and Murphy,
2010; Zhou et al., 2017). Many recent studies on E. crassipes have
mainly focused on topics such as its biological control and clonal
integration, water purification and the interactions of E. crassipes
with herbivores (Bownes et al., 2013; Pi et al., 2017; Yu et al., 2019);
however, how abiotic factors and the biotic determinants of plant
diversity affect the impact of E. crassipes is largely unknown. Given
that E. crassipes shows superior abilities in terms of rapid growth,
nutrient absorption, and environmental adaptation (You et al.,
2014) and climate change is ongoing (e.g., warming and frequent
floods), this invasive plant may expand its northern boundaries to
higher latitudes and thus cause larger negative impacts on aquatic
plant diversity in these regions (Hoveka et al., 2016; Liu et al., 2017;
Wu and Ding, 2019). Therefore, understanding the biotic traits and
ecological effects of E. crassipes under global environmental changes
is critical for accurately predicting its future invasion trends and
conserving native biodiversity in aquatic ecosystems.

In this study, we conducted field investigations on aquatic
plant communities that were invaded by E. crassipes in southern
China. We also measured the total carbon and nitrogen contents
of E. crassipes, and recorded environmental factors in every
sampling plot, to examine the determinants of plant diversity
in the E. crassipes-invaded community.

We hypothesize that heterogeneous environments may
significantly affect the impacts of E. crassipes on native plant
diversity. Specifically, we addressed the following two questions:
(1) what are the coupling relationships between the growth and
nutrient contents of E. crassipes and the environment, and (2) which
abiotic (environmental) and biotic (species-specific) factors
determine aquatic plant diversity in invaded communities?
August 2020 | Volume 11 | Article 1306

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Wu and Ding Determinants of Eichhornia crassipes-Invaded Community
MATERIALS AND METHODS

Field Survey and Data Collection
During July and August 2014, we conducted a field survey of
invasive E. crassipes in Hunan, Guangxi and Guangdong
Provinces in southern China. We selected ponds or rivers in
which E. crassipes covered an area of more than 100 m2. We set
20 plots (10 m × 10 m, at least 10 km apart) spanning a
latitudinal gradient from 21°N to 28°N (as shown in Figure 1).
Three 10 m transects were evenly set up in each plot, and five
quadrats (0.5 m × 0.5 m) were uniformly spaced 2 m apart in
each transect. We used the measurement methods of Wu et al.
(2017) to record the species name, height, coverage, and
abundance of each plant species in every quadrat. After the
investigation of the plant community, we randomly collected the
aboveground portions of eight E. crassipes individuals from each
plot and stored them separately in sealed plastic bags filled with
silicone. These plant samples were then brought back to the
laboratory to measure the total carbon and total nitrogen
contents of the leaves and stems of E. crassipes by using a
vario TOC cube analyzer (Elementar, Germany), and the
stoichiometric C:N ratios (total carbon/total nitrogen) in the
leaves and stems were calculated.

We recorded the longitude, latitude and elevation within each
plot using a handheld GPS receiver (Garmin eTrex 20, Kansas,
USA). The conductivity and dissolved oxygen and nitrate
nitrogen contents of the water were measured using a YSI
water quality analyzer (Professional Plus, Ohio, USA). We
Frontiers in Plant Science | www.frontiersin.org 3
successively calibrated the nitrate nitrogen sensor of the YSI
analyzer with 100 mg/L and 1 mg/L standard solutions
before measuring the water quality. The data probes were
inserted below the water surface at a depth of 20 cm, and the
data were read when a stable display was observed (Wu et al.,
2017; Budzyńska et al., 2019). We obtained and calculated
accurate data for the mean annual temperature and mean
annual precipitation of every sampling plot in the last 50 years
from the database of the National Meteorological Center, China
Meteorological Administration (http://www.nmc.cn/) (the
values of environmental factors in each plot are shown in
Supplementary Table 1).

Data Analysis
Based on the field survey, the relative importance value (IV) of
the plant species in each plot was calculated using the following
formula:

Relative IV¼  ðrelative cover + relative height

+ relative abundanceÞ=3
while the total IV was the sum of a plant species’ relative IV in

all plots (Jing et al., 2014).
To assess the plant diversity of the E. crassipes-invaded

community, the following four a-species diversity indices were
calculated (Higuti et al., 2007; Wu et al., 2016):

Patrick richness index :  R = S;
FIGURE 1 | Sampling plots in E. crassipes-invaded areas in southern China along latitudinal gradients (21°N to 28°N). Plot size: 10 × 10 m; Transect size: 10 m;
Quadrat size: 0.5 × 0.5 m.
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Simpson diversity index :  l = 1�SP2i ;

Shannon-Wiener diversity index :  H¼ -SPi ln Pi;

Pielou evenness index: E=(-SPi ln Pi)/ln S, where S is the total
number of plant species in a plot, and Pi is the relative abundance
of species i.

We used regression analysis to examine the relationships
between eight environmental factors (longitude, latitude,
elevation, conductivity, dissolved oxygen, nitrate nitrogen,
temperature, and precipitation) and the nine biotic traits of E.
crassipes (abundance, height, species cover, the total carbon
content of the leaves, and stems, the total nitrogen content of
the leaves and stems, and the C:N ratio of the leaves and stems).
We applied 11 regression models (linear, quadratic, compound,
growth, logarithmic, cubic, S, exponential, inverse, power, and
logistic) provided in SPSS 16.0 software (SPSS Inc., Chicago,
USA). Then, we selected the best-fitting models showing the
maximum fitting coefficient (R2) and a significant P value (P <
0.05). We used the same method to examine the relationship
between the relative IV of E. crassipes and four species
diversity indices.

To examine the effect of environmental heterogeneity on the
plant diversity and species distribution within communities
invaded by E. crassipes, we first established an environmental
matrix containing eight environmental factors (20 × 8), with a
plant diversity matrix containing four indices (20 × 4) and a
relative IVmatrix containing 15 plant species (20 × 15). We then
conducted detrended correspondence analysis (DCA) using the
quantitative ordination software Canoco 4.5 (Microcomputer
Power, New York, USA) to predict whether the linear or
unimodal model would be appropriate for use. The results
indicated that both of the longest gradient lengths of the plant
diversity matrix and relative IV matrix were less than three
standard deviations, thus, we preferred to perform redundancy
analysis (RDA) (Chappuis et al., 2014). We also established an E.
crassipes invasion matrix containing nine biotic traits (20×9) and
Frontiers in Plant Science | www.frontiersin.org 4
used the same method to examine the effect of E. crassipes
invasion on plant diversity. The variable in the RDA ordination
diagram that presented the highest value of the correlation
coefficient was indicated to be the main determinant factor
of this ordination axis. We performed a Monte Carlo
permutation test based on 499 random permutations to test the
significance of the correlation coefficient (Ter Braak and
Smilauer, 2002).
RESULTS

Environmental Determinants of
E. crassipes Performance
The optimal fitting relationships between latitude and E. crassipes
abundance (F1, 18 = 4.817, P = 0.042) and the total carbon content of
the stem (F1, 18 = 5.124, P = 0.036) were all linear equations, and
with increasing latitude, these two traits showed significant increases
(Figures 2A, B). Dissolved oxygen presented significant compound
regression relationships with the height (F1, 18 = 5.078, P = 0.037)
and invasion cover (F1, 18 = 4.545, P = 0.047) of E. crassipes, with
both parameters decreasing with increasing dissolved oxygen levels
(Figures 2C, D). The variation in E. crassipes height along the
conductivity gradient was unstable and was characterized by a cubic
equation (F2, 17 = 5.114, P = 0.011); however, E. crassipes height
overall increased with increasing conductivity (Figure 2E). The
optimal fitting relationships between the annual mean temperature
and E. crassipes abundance (F2, 17 = 3.637, P = 0.048) and the total
nitrogen content of the stem (F1, 18 = 5.455, P = 0.031) were
represented by quadratic and S equations, respectively. Increasing
temperature significantly decreased abundance and the stem
nitrogen content (Figures 2F, G). Increased annual mean
precipitation also significantly reduced the stem nitrogen content
of E. crassipes, which was shown by the S equation (F1, 18 = 4.874,
P = 0.040) (Figure 2H). In addition, elevation and the nitrate
nitrogen content of water had no significant effect on E. crassipes
A B D

E F G H

C

FIGURE 2 | The abiotic environmental factors which significantly affected E. crassipes performance are latitude (A, B), dissolved oxygen (C, D), conductivity (E),
annual mean temperature (F, G) and annual mean precipitation (H).
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performance, and all eight environmental factors had no significant
effects on the C:N value of E. crassipes.

Effect of Environmental Factors on Plant
Diversity
A total of 15 plant species in eight families and 14 genera were
recorded in our 20 plots. Poaceae exhibited the greatest richness,
with five species in our plots, followed by Pontederiaceae and
Polygonaceae, which both presented two species (see
Supplementary Table 2). Among all species in the communities,
E. crassipes exhibited the greatest total importance value (IV =
17.818). The other primary accompanying species based on the total
IV were Paspalum distichum (IV = 0.660), Monochoria vaginalis
(IV = 0.347) and A. philoxeroides (IV = 0.279). The ranges of the
four species diversity indices in each plot were as follows: Patrick
richness index (1–5), Simpson diversity index (0–0.554), Shannon–
Wiener diversity index (0–1.056), and Pielou evenness index
(0-0.675).

For the relationship between the environmental factors and
species diversity indices, the RDA ordination results showed that
the cumulative percentage of variance in the diversity–
environment relationships explained by the first two canonical
axes reached 99.70% (90.70% for axis1 and 9.00% for axis2).
Among these eight environmental factors, longitude was
significantly positively related to axis1 (coefficient = 0.837, P <
0.001) and elevation was significantly negatively related to axis1
(coefficient = −0.612, P < 0.01). Dissolved oxygen (coefficient =
−0.606, P < 0.01) and precipitation (coefficient = −0.573, P <
0.01) were both significantly negatively related to axis2, while
conductivity was significantly positively related to the axis2
(coefficient = 0.635, P < 0.01) (Table 1). However, longitude
and elevation were the most important drivers of plant diversity
in the E. crassipes-invaded community, as the loading on axis1
was much higher than that on axis2. Longitude was highly
positively correlated with the four species diversity indices,
particularly the Patrick richness index, while elevation was
strongly negatively correlated with all of the diversity indices
(Figure 3A). Dissolved oxygen and precipitation were both
positively correlated with the Simpson diversity index, Pielou
Frontiers in Plant Science | www.frontiersin.org 5
evenness index and Shannon–Wiener diversity index but
presented very week correlations with the Patrick richness
index (Figure 3A).

Effect of Environmental Factors on
Species Distributions
For the relationship between the environmental factors and
species distributions, the cumulative percentage variance
explained by the first two canonical RDA axes was 76.40%
(47.60% for axis1 and 28.8% for axis2, see Figure 3B).
Longitude was significantly positively related to axis1
(coefficient = 0.858, P<0.001) and elevation was significantly
negatively related to axis1 (coefficient = −0.531, P < 0.05), while
dissolved oxygen was significantly negatively related to axis2
(coefficient = −0.547, P < 0.05) (Table 1). In the RDA biplot
(Figure 3B), E. crassipes (1) was strongly negatively correlated
with longitude and dissolved oxygen but slightly positively
correlated with elevation. Oryza sativa (10) and Acorus
calamus (11) were both strongly positively correlated with
longitude. P. distichum (2) and M. vaginalis (3) were positively
correlated with elevation, while A. philoxeroides (4), Polygonum
hydropiper (14) and Humulus scandens (15) were all strongly
negatively correlated with elevation. The species exhibiting
strong correlations with high dissolved oxygen were
Beckmannia syzigachne (5) and Arthraxon hispidus (6), while
Echinochloa phyllopogon (8) and Hydrocharis dubia (9) were
highly negatively correlated with dissolved oxygen. In addition,
Fimbristylis dichotoma (12), Leersia hexandra (13), O. sativa
(10), and A. calamus (11) were extremely negatively correlated
with E. crassipes, as their vector directions in our RDA biplot
were almost opposite (Figure 3B).

Relationship Between E. crassipes
Invasion and Plant Diversity
All of the 20 plots were dominated by E. crassipes, and the
relative IV of E. crassipes in each plot varied from 0.617 to 1.000
with an average value of 0.891. The optimal fitting relationships
between the relative IV of E. crassipes and the Patrick richness
index (F2, 17 = 54.880, P < 0.001) and Pielou evenness index
(F2, 17 = 147.595, P < 0.001) were all represented by cubic
equations, while the optimal fitting relationships between the
relative IV of E. crassipes and the Simpson (F1, 18 = 457.780, P <
0.001) and Shannon–Wiener diversity indices (F1, 18 = 718.332,
P < 0.001) were all linear equations (Figure 4). With an
increase in the E. crassipes IV, all four diversity indices
decreased; however, the Simpson and Shannon–Wiener
diversity indices showed a faster downward tendency (Figures
4B, C), indicating that E. crassipes invasion caused greater
negative effects on the comprehensive diversity than species
richness and community evenness.

According to the RDA results (Table 2 and Figure 5), the
cumulative percentage of variance explaining the E. crassipes
traits–diversity index relationships of the first two canonical axes
reached 99.80% (91.0% for axis1 and 8.80% for axis2). Species
cover and leaf C:N were the primary biotic determinants of plant
diversity, which were all significantly positively related to axis1
TABLE 1 | Correlations between the eight abiotic environmental factors and the
first two RDA axes.

Environment factors Environment–diversity
indices

Environment–species
distribution

Axis 1 Axis 2 Axis 1 Axis 2

LAT −0.022 0.202 −0.114 −0.369
LON 0.837*** −0.068 0.858*** 0.109
ELE −0.612** −0.085 −0.531* −0.422
NO3 0.336 0.284 0.246 0.008
DOX 0.167 −0.606** 0.310 −0.547*
CON 0.108 0.635** −0.221 0.248
TEM 0.141 −0.152 0.222 0.414
PRE 0.227 −0.573** 0.389 −0.242
LAT, LON, ELE, NO3, DOX, CON, TEM, and PRE represent latitude, longitude, elevation,
nitrate nitrogen, dissolved oxygen, conductivity, mean annual temperature, and mean
annual precipitation, respectively.
*P < 0.05 level. **P < 0.01 level. ***P < 0.001 level.
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(coefficient = 0.522, P < 0.05; coefficient = 0.501, P < 0.05,
respectively). The abundance of E. crassipes was significantly
positively related to axis2 (coefficient = 0.567, P < 0.05). The
Simpson and Shannon–Wiener diversity and Pielou evenness
index and were strongly negatively correlated with E. crassipes
cover and abundance, while the Patrick richness index was
slightly negatively correlated with these two traits. The four
diversity indices were also strongly negatively correlated with
the leaf C:N ratio of E. crassipes, especially the Patrick richness
index (Figure 5). The remaining other traits exhibited no
significant relationship with the RDA axes.
DISCUSSION

In this study, we identified the abiotic and biotic determinants of
plant diversity associated with E. crassipes invasion in southern
China. We found that all four calculated a-species diversity indices
significantly decreased with the increase in E. crassipes importance
value. Increasing latitude increased E. crassipes abundance and the
total carbon content of the stem. Increasing E. crassipes height and
species cover could reduce the dissolved oxygen, while increase in
water conductivity increased E. crassipes height. We also found that
elevated temperature decreased E. crassipes height and the total
nitrogen content of the stem, and elevated precipitation also
decreased stem nitrogen. The RDA results showed that the
primary environmental determinants of plant diversity in the E.
crassipes community were longitude and elevation, while the biotic
determinants associated with E. crassipes traits were E. crassipes
cover, the leaf C:N ratio and abundance.

Invasive plants usually exhibit greater phenotypic plasticity
and photosynthetic abilities than accompanying native plants
(Godoy et al., 2012; Wang et al., 2017). In higher latitudes with
relatively extreme environments, many invasive plants may
show changes in their ecological and/or physiological traits in
response to dramatic environmental changes (Lacoul and
Frontiers in Plant Science | www.frontiersin.org 6
Freedman, 2006; Wu et al., 2017), as observed in E. crassipes
in our study. In general, increasing latitude decreases solar
irradiance, temperature and precipitation (Santamarıá, 2002).
Thus, as a thermophilous invasive plant native to the tropics, a
higher E. crassipes population density confers the advantage of
capturing more solar energy in higher latitudes comparing
with the native cooccurring plants, which could compensate
for the energy loss caused by thermal fluctuations (Liu
et al., 2016). An increase in stem carbon could improve
individual toughness and tolerance to stresses by increasing
the biosynthesis of lignins and polyphenols, because lignins
depositing in secondary cell wall of stem tissues can improve
the structural support and water transport in plant growth and
development. Thus, in colder environments increasing lignins
could increase stem hardness and then enhance plant tolerance
(Cabané et al., 2012; Liu et al., 2018). Polyphenols as important
secondary chemicals responding to abiotic stresses may also be
associated with invasive plant tolerance to low temperature
(Sharma et al., 2019). Thus, increasing carbon might facilitate
the establishment and spread of E. crassipes in stressed habitats
in higher latitudes. Additionally, the obvious seasonal
exchange of atmospheric CO2 in higher latitudes would also
stimulate the carbon concentration of plant tissues (Denning
et al., 1995; Marko et al., 2008; Elser et al., 2010). The similar
patterns of abundance and stem carbon varied along the
latitudinal gradient have been observed in other aquatic
invasive plants, such as A. philoxeroides in China and P.
australis in Canada (Cronin et al., 2015; Wu et al., 2017). As
there was a significant negative co-varying relationship
between latitude and temperature at large spatial scales, the
response of E. crassipes abundance to increasing temperature
showed an opposite trend to that of the latitude gradient
(Figure 2F).

According to the latitudinal biotic interaction hypothesis
(Schemske et al., 2009; Moles et al., 2011), plants may suffer
more pressures from herbivores at lower latitudes. Thus, plants
A B

FIGURE 3 | RDA ordination diagrams of eight abiotic environmental factors and four species diversity indices (A) and 15 plant species in the E. crassipes community (B).
LAT, LON, ELE, NO3, DOX, CON, TEM, and PRE represent latitude, longitude, elevation, nitrate nitrogen, dissolved oxygen, conductivity, mean annual temperature, and mean
annual precipitation, respectively. Arabic numerals represent the 15 plant species as follows: 1 Eichhornia crassipes, 2 Paspalum distichum, 3 Monochoria vaginalis, 4
Alternanthera philoxeroides, 5 Beckmannia syzigachne, 6 Arthraxon hispidus, 7 Polygonum sieboldii, 8 Echinochloa phyllopogon, 9 Hydrocharis dubia, 10 Oryza sativa, 11
Acorus calamus, 12 Fimbristylis dichotoma, 13 Leersia hexandra, 14 Polygonum hydropiper, and 15 Humulus scandens.
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at low latitudes may develop high resistance to herbivores. This
could explain the lower nitrogen contents in plant tissue in low
latitudes (Figures 2G, H), for reducing its palatability for
herbivores (Schemske et al., 2009; Grutters et al., 2017).
Some relevant studies also have shown that relative to the
plants that grow under decreased annual mean temperature
and precipitation in high latitudes, aquatic invasive plants in
low latitudes are less nutritious (Morrison and Hay, 2012; Cronin
et al., 2015; Petruzzella et al., 2017). The vigorous growth of
aquatic invasive plants and the decomposition of their litter
usually consume a large amount of dissolved oxygen, which
greatly restricts native plant growth, while higher dissolved
oxygen levels in water environments might benefit the
restoration of the native plant community by alleviating
competition for oxygen and, thus, decrease invasive plant
competitiveness (Sakurai et al., 2017; Wu and Ding, 2019),
explaining the decreasing height and plant cover of E. crassipes
with increasing dissolved oxygen levels. Conductivity is usually
Frontiers in Plant Science | www.frontiersin.org 7
proportional to inorganic ion concentrations (e.g. Na+, Mg2+,
Cl−); therefore, as a result of the salt-induced water deficit, plant
height usually decreases with increased conductivity (Wang
et al., 2019). However, many aquatic invasive plants exhibit
high salt tolerance (such as Myriophyllum spicatum, P.
australis and E. crassipes). Thus, increased water conductivity
may stimulate vigorous compensatory growth, resulting in a
greater plant height (Thouvenot et al., 2012; Chappuis et al.,
2014; Stoler et al., 2018). Nitrate nitrogen had no effect on E.
crassipes performance in this study, likely because E. crassipes has
a high nitrogen adsorption capacity (Gao et al., 2013; You et al.,
2014), and our plots showed relatively high contents of
nitrate nitrogen.

A previous study showed species diversity of hydrophytes
increases from the northwest to the southeast with increasing
longitude in China (Li et al., 2006), and this pattern was applied to
the E. crassipes-invaded communities in this study. It might be
related to changes in water salinity and hydrological variability
A B

DC

FIGURE 4 | The comprehensive diversity (B, C) showed the faster downward tendency than species richness (A) and community evenness (D) with the increasing
E. crassipes invasion.
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along the longitudinal gradient. Moreover, the diverse rugged
aquatic landscapes and water-level fluctuations caused by the
variable rainfall patterns across longitudes may also support
higher hydrophyte diversity and thus resist aquatic plant
invasions (Goldblatt, 1997; Alahuhta et al., 2018). With an
increase in elevation, habitat filtering plays a stronger role in
shaping the biological community assemblage, especially for the
aquatic plant community (Laliberte et al., 2014; Liu and Wang,
2018). A phenomenon similar to the higher species diversity of
Frontiers in Plant Science | www.frontiersin.org 8
hygrophytes in lower-elevation regions observed in our E.
crassipes community has been found in the Yangtze River of
China (Liu and Wang, 2018). Elevated dissolved oxygen and
precipitation could alleviate the interspecific competition
between invasive and native aquatic plants (Ji et al., 2009; Lacet
et al., 2019), thus increasing the Shannon–Wiener and Simpson
diversity indices and Pielou evenness index. However, as a
measure of salinity, conductivity has been proven to have strong
detrimental effects on native hydrophyte diversity but to facilitate
aquatic alien plant invasions, as these invasive plants are always
salt tolerant (Nielsen et al., 2003; Pulzatto et al., 2019). The Patrick
richness index was weakly affected by the water environment,
likely due to the low plant richness in the invaded community. In
fact, in some sampling plots, E. crassipes was the only species
present; thus, the Patrick richness index was insensitive to
microhabitat changes. In the RDA biplot, Oryza sativa, A.
calamus, F. dichotoma, and L. hexandra showed exerted
negative effects on E. crassipes, likely due to their superior
properties related to the resistance of biological invasions, such
as taller growth or tillering growth, allowing them to coexist for a
long time in this invaded community. Consistent with our
previous studies on aquatic A. philoxeroides-invaded community
(Wu et al., 2017), in this study, we found the plant diversity of the
E. crassipes community increased as longitude increased. These
findings have important implications for predicting aquatic plant
invasions and their effects on plant diversity. For example, the
rainfall in mainland China would continuously increase with
increasing longitude under ongoing climate change, which my
further improve aquatic invasive plant growth (Liu et al., 2008;
Anufriieva and Shadrin, 2018; Wu and Ding, 2019). Additionally,
more frequent anthropogenic activities in high longitude in China
could result in more pollutants, e.g., organic compounds, nitrogen,
and phosphorus, subsequently leading to water eutrophication
and then facilitating aquatic invasive plant invasions (Ding et al.,
2008; Le et al., 2010; Wu and Ding, 2019). Together, all the above-
mentioned factors could trigger aquatic plant invasions and then
negatively change plant diversity of aquatic invaded communities
across longitudes. Therefore, more attention should be paid to the
species diversity of aquatic invasive plant communities along a
longitudinal gradient at large biogeographical scales compared to
the LDG rule (latitudinal diversity gradient) of their terrestrial
counterparts (Wu et al., 2016).

The vigorous asexual ramets (abundance) of aquatic invasive
plants allow them to rapidly and fully occupy the available niche
space, limiting the establishment of other native aquatic plants
and, thus, dramatically decreasing aquatic plant diversity (Stiers
and Triest, 2017; Yu et al., 2019). However, in our study, height
did not contribute to E. crassipes invasiveness, likely because
there were several tall hydrophytes in the invaded community
(e.g., P. distichum, B. syzigachne, A. calamus, L. hexandra), which
could disrupt the shading effect of E. crassipes. The plant C:N
ratio may be correlated with defense ability, affecting plant
diversity in invaded communities (Sardans et al., 2017). An
increasing C:N ratio usually leads to higher total phenolic
contents and leaf toughness of invasive plants, which would
decrease plant nutritional quality and, thus, reduce palatability to
TABLE 2 | Correlations between the nine biotic traits of E. crassipes and the first
two RDA axes.

Environment factors Traits of E. crassipes-diversity indices
Axis 1 Axis 2

C-leaf −0.405 0.454
N-leaf −0.435 0.397
C-stem 0.418 0.044
N-stem 0.264 0.180
ABU 0.409 0.567*
HEI −0.024 0.104
COV 0.522* 0.480
C/N-leaf 0.501* −0.307
C/N-stem −0.213 −0.248
C-leaf, N-leaf, C-stem, N-stem, ABU, HEI, COV, C/N-leaf, and C/N-stem represent the
total carbon content of the leaves, the total nitrogen content of the leaves, the total carbon
content of the stem, the total nitrogen content of the stem, abundance, height, invasion
cover, the C:N ratio of the leaves, and the C:N ratio of the stem, respectively.
*P < 0.05 level.
FIGURE 5 | RDA ordination diagram of the nine biotic traits of E. crassipes
and four species diversity indices. C-leaf, N-leaf, C-stem, N-stem, ABU, HEI,
COV, C/N-leaf, and C/N-stem represent the total carbon content of the
leaves, the total nitrogen content of the leaves, the total carbon content of the
stem, the total nitrogen content of the stem, abundance, height, E. crassipes
coverage, C:N of the leaves, and C:N of the stem, respectively.
August 2020 | Volume 11 | Article 1306

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Wu and Ding Determinants of Eichhornia crassipes-Invaded Community
herbivores, facilitating invasiveness and increasing the negative
impacts on native species (Cronin et al., 2015; Petruzzella et al.,
2017; Zerche et al., 2019). This is consistent with the negative
effect of a higher leaf C:N ratio of E. crassipes on native plant
diversity observed in our study. Similar phenomena have been
found in other aquatic invasive plants such as Spartina
alterniflora in China and P. australis in Europe (Cronin et al.,
2015; Qiao et al., 2018). The C:N ratio of E. crassipes was weakly
affected by the abiotic environment, and this internal stability of
ecological stoichiometry might be one of the important
mechanisms contributing to aquatic plant invasions (Gonzalez
et al., 2010).

In summary, in this study, we identified the abiotic and biotic
determinants of plant diversity in E. crassipes-invaded
communities. These findings also provide insights for the risk
assessment of other aquatic invasive plants. The spread and
establishment of many aquatic invasive plants may further
accelerate under rapid global change (Wu and Ding, 2019),
and aquatic ecosystems would thus suffer a more serious
invasion threat (Capers et al., 2007; Wu et al., 2017). In the
context of global warming and the northward shift of rain belts,
the prediction and assessment of aquatic invasive plants will
become more complicated at higher latitudes. Exploring the
determinants and ecological effects of these aquatic invasive
plants is crucial for predicting their dynamics in a changing
environment and prioritizing biodiversity protection efforts.
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